中国机械工程 ›› 2011, Vol. 22 ›› Issue (7): 830-835.

• 机械基础工程 • 上一篇    下一篇

一类流水型知识化制造单元调度的自进化算法

李文超1,2;严洪森1
  

  1. 1.东南大学复杂工程系统测量与控制教育部重点实验室, 南京,210096
    2.江苏大学,镇江,212013
  • 出版日期:2011-04-10 发布日期:2011-04-15
  • 基金资助:
    国家自然科学基金资助项目(60934008,50875046)
    National Natural Science Foundation of China(No. 60934008,50875046)

A Self-evolution Algorithm for Scheduling a Flow-shop-like Knowledgeable Manufacturing Cell

Li Wenchao1,2;Yan Hongsen1
  

  1. 1.Key Laboratory of Measurement and Control of CSE, Ministry of Education, Southeast University, Nanjing, 210096
    2.Jiangsu University, Zhenjiang,Jiangsu, 212013
  • Online:2011-04-10 Published:2011-04-15
  • Supported by:
    National Natural Science Foundation of China(No. 60934008,50875046)

摘要:

机器数大于2的流水型知识化制造单元调度属于NP完全问题,至今尚无完全有效的算法。针对该类问题的自身结构特性,提出一种具备学习能力的自进化算法。该算法采用强化学习中值迭代策略,在运行中能够从环境中获取相应知识,提高其搜索能力。提出一种混合核支持向量机对值函数进行逼近,以解决学习过程中状态过多的问题。数值仿真实验表明,算法对该类问题具有很好的学习进化能力。

关键词:

Abstract:

The flow-shop-like knowledgeable manufacturing cell (whose machine number is greater than 2) scheduling is a NP-complete problem and has not a completely valid algorithm for it until now. A self-evolution algorithm with learning ability was proposed according to its structure and characteristics. By adopting the value iterative strategies of reinforcement learning, the algorithm can absorb the corresponding knowledge from its environment during its running and improve its search ability. The approximation of value function is completed by use of the SVM with a hybrid kernel to avoid the too many states in learning process. Numerical experiments show that the algorithm has excellent performance of learning and evolution for the problem.

Key words:

中图分类号: