中国机械工程 ›› 2012, Vol. 23 ›› Issue (2): 204-207.

• 机械基础工程 • 上一篇    下一篇

基于改进BP神经网络的连铸漏钢预报

张本国1;李强1,2;王葛1;张水仙1
  

  1. 1.燕山大学,秦皇岛,066004
    2.河北科技大学,石家庄,050018
  • 出版日期:2012-01-25 发布日期:2012-02-14
  • 基金资助:
    河北省科学技术研究与发展计划资助项目(07212119D)
    Hebei Provincial S&T Research and Development Program of China(No. 07212119D)

Breakout Prediction Based on Improved BP Neural Network in Continuous Casting Process

Zhang Benguo1;Li Qiang1,2;Wang Ge1;Zhang Shuixian1
  

  1. 1.Yanshan University,Qinhuangdao,Hebei,066004
    2.Hebei University of Science and Technology,Shijiazhuang,050018
  • Online:2012-01-25 Published:2012-02-14
  • Supported by:
    Hebei Provincial S&T Research and Development Program of China(No. 07212119D)

摘要:

针对传统BP神经网络在训练过程中存在收敛速度慢的缺陷,将LM(levenberg marquardt)算法引入到BP神经网络的训练过程,建立了LM-BP神经网络模型,并将其应用于连铸过程中的漏钢预报系统。结合某钢厂连铸现场历史数据对系统进行了测试,测试结果以96.15%的预报率及100%的报出率,验证了基于LM算法的BP神经网络连铸漏钢预报方案的可行性和有效性。

关键词:

Abstract:

LM algorithm was introduced to the training process of
a BP neural network and a LM-BP neural network model was established aiming at the
defects of slow convergence in the training process of the traditional BP
neural network.The LM-BP neural network model was applied to the breakout prediction
in the continuous casting processes,and it was tested with the historical data collected
from a steel mill.The feasibility and the validity of the model are verified by the results with
the accuracy rate of 96.15% and the prediction rate of 100%.

Key words:

中图分类号: