J4 ›› 2008, Vol. 19 ›› Issue (3): 351-354.

• 材料工程 • 上一篇    下一篇

盒形件拉深智能化控制实时识别及预测

苏春建;赵军;官英平;马瑞   

  • 收稿日期:1900-01-01 修回日期:1900-01-01 出版日期:2008-02-10 发布日期:2008-02-10

Real-time Identification and Prediction for Intelligent Control of Rectangular Box Drawing

Su Chunjian;Zhao Jun;Guan Yingping;Ma Rui   

  • Received:1900-01-01 Revised:1900-01-01 Online:2008-02-10 Published:2008-02-10

摘要:

在板材成形智能化控制的4个基本要素中,材料性能参数的实时识别及最优工艺参数的预测是最复杂的两个要素。识别和预测精度的高低,将直接影响智能化控制成功与否。以盒形件智能拉深控制为研究对象,建立了盒形拉深件的材料性能参数和摩擦因数的实时识别前馈神经网络,通过实时监测来实时识别所需要的材料性能参数,并预测最优的工艺参数,从而获得了较高的收敛精度。

关键词: 板材成形;智能化;神经网络;实时识别;参数预测

Abstract:

In the four basic factors on the intellectualization of sheet metal forming, the real-time identification of the material performance parameter and the prediction of the optimum technological parameter are the most complicated ones. The accuracy of identification and prediction will have direct effect on the success of the intelligence control. Taking the intelligence control of rectangular box as an object of study, feed forward neural network model based on LM algorithm had been established to realize material properties and friction coefficient for deep drawing of rectangular box. By means of real-time monitoring and measuring to identify the material performance parameters and to predict the optimum technological parameters, and a satisfied accuracy of convergence is achieved.

Key words: sheet metal forming, intellectualization, neural network, real-time identification, parameter prediction

中图分类号: