[1]张秀玲,张少宇,赵文保,等. 板形模式识别的多输出最小二乘支持向量回归机新方法[J]. 中国机械工程,2013,24(2):258-263.
Zhang Xiuling, Zhang Shaoyu, Zhao Wenbao, et al. A Novel Method for Flatness Pattern Recognition via MLSSVM[J]. China Mechanical Engineering, 2013,24(2):258-263.
[2]古莹奎,承姿辛,朱繁泷. 基于主成分分析和支持向量机的滚动轴承故障特征融合分析[J]. 中国机械工程,2015,26(20):2778-2783.
Gu Yingkui, Cheng Zixin, Zhu Fanlong. Rolling Bearing Fault Feature Fusion Based on PCA and SVM[J]. China Mechanical Engineering, 2015,26(20):2778-2783.
[3]曾鸣,杨宇,郑近德,等. 基于LCD和KNNCH分类算法的齿轮故障诊断方法[J].中国机械工程, 2015,25(15):2049-2054.
Zeng Ming, Yang Yu, Zheng Jinde, et al. Fault Diagnosis Approach for Gears Based on LCD and KNNCH Classification Algorithm[J]. China Mechanical Engneering, 2015,25(15):2049-2054.
[4]张爱,陆有忠,郑璐石. 迅速崛起的机器学习技术——支持向量机[J].宁夏工程技术,2004,3(2):136-140.
Zhang Ai,Lu Youzhong,Zheng Lushi. Rapidly Emerging Machine Learning Technology—Support Vector Machine[J]. Ningxia Engineering Technology, 2004,3(2):136-140.
[5]Wu Z,Huang N E. A Study of the Characteristics of White Noise Using the Empirical Mode Decomposition Method[J].Proceedings of the Royal Society A,2004,460(2046):1597-1611.
[6]郑近德,程军圣,杨宇. 基于改进的ITD和模糊熵的滚动轴承故障诊断方法[J]. 中国机械工程,2012,23(19):2372-2377.
Zheng Jinde, Cheng Junsheng, Yang Yu. A Rolling Bearing Fault Diagnosis Method Based on Improved ITD and Fuzzy Entropy[J]. China Mechanical Engneering,2012,23(19):2372-2377.
[7]胡爱军,孙敬敬,向玲. 经验模态分解中的模态混叠问题[J]. 振动、测试与诊断,2011,31(4):429-434.
Hu Aijun, Sun Jingjing, Xiang Ling. Mode Mixing in Empirical Mode Decomposition[J]. Journal of Vibration, Measurement & Diagnosis, 2011,31(4):429-434.
[8]Wu Zhaohua,Huang N E. Ensemble Empirical Mode Decomposition:a Noise-assisted Data Analysis Method [J]. Advances in Adaptive Data Analysis, 2009,1(1):1-41.
[9]Pincuss S M. Approximate Entropy as a Measure of System Complexity[J]. Proceeding of the National Academy Sciences, 1991,88(6):2297-2301.
[10]王延博.汽轮发电机组轴系低频振动故障特征及其诊断实例[J].热力发电,2005(1):32-35.
Wang Yanbo. Fault Characteristics of Low Frequency Vibration of Turbine Generator Set and Its Diagnosis Example[J]. Thermal Power Generation, 2005(1):32-35.
[11]徐启华,师军.基于支持向量机的航空发动机故障诊断[J].航空动力学报,2005,20(2):298-302.
Xu Qihua,Shi Jun. Aeroengine Fault Diagnosis Based on SVM[J]. Journal of Aviation Power,2005,20(2):298-302.
[12]吴虎胜,吕建新,吴庐山,等.基于EMD和SVM的柴油机气阀机构故障诊断[J].中国机械工程,2010,21(22):2710-2714.
Wu Husheng, Lü Jianxin, Wu Lushan, et al. Fault Diagnosis for Diesel Valve Train Based on SVM and EMD[J]. China Mechanical Engneering,2010,21(22):2710-2714.
[13]Takahashi F,Abe S . Decision-tree-based Multiclass Support Vector Nachines [C]//Proceedings of the 9th International Joint Conference on Networks. Singapore:IEEE Press,2002:1418-1422.
[14]杨宇,潘海洋,程军圣. 基于LCD降噪和VPMCD的滚动轴承故障诊断方法[J].中国机械工程,2013,24(24):3338-3344.
Yang Yu, Pan Haiyang, Cheng Junsheng. A Rolling Bearing Fault Diagnosis Method Based on LCD De-noising and VPMCD[J]. China Mechanical Engneering, 2013, 24(24): 3338-3344.
|