[1]刘丽娟, 陈果, 郝腾飞. 基于流形学习与一类支持向量机的滚动轴承早期故障识别方法[J]. 中国机械工程,2013,24(5): 628-633.
Liu Lijuan, Chen Guo, Hao Tengfei. Incipient Fault Recognition of Rolling Bearings Based on Manifold Learning and One-class SVM[J]. China Mechanical Engineering, 2013,24(5): 628-633.
[2]欧璐, 于德介. 基于拉普拉斯分值和模糊C均值聚类的滚动轴承故障诊断[J]. 中国机械工程,2014,25(10): 1352-1357.
Ou Lu, Yu Dejie. Rolling Bearing Fault Diagnosis Based on Laplacian Score and Fuzzy C-means Clustering[J]. China Mechanical Engineering, 2014,25(10): 1352-1357.
[3]Wang Yi, Xu Guanghua, Liang Lin, et al. Detection of Weak Transient Signals Based on Wavelet Packet Transform and Manifold Learning for Rolling Element Bearing Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2015, 54: 259-276.
[4]Ding Xiaoxi, He Qingbo, Luo Nianwu. A Fusion Feature and Its Improvement Based on Locality Preserving Projections for Rolling Element Bearing Fault Classification[J]. Journal of Sound and Vibration, 2015, 335: 367-383.
[5]Yu Jianbo. Bearing Performance Degradation Assessment Using Locality Preserving Projections[J]. Expert Systems with Applications, 2011, 38(6): 7440-7450.
[6]Huang Yixiang, Zha X F, Lee J, et al. Discriminant Diffusion Maps Analysis: a Robust Manifold Learner for Dimensionality Reduction and Its Applications in Machine Condition Monitoring and Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2013, 34(1): 277-297.
[7]黄宏臣, 韩振南, 张倩倩,等. 基于拉普拉斯特征映射的滚动轴承故障识别[J]. 振动与冲击,2015,34(5): 128-134.
Huang Hongchen, Han Zhennan, Zhang Qianqian, et al. Method of Fault Diagnosis for Rolling Bearings Based on Laplacian Eigenmap[J]. Journal of Vibration and Shock, 2015,34(5): 128-134.
[8]Jolliffe I T. Principal Component Analysis [M]. New York: Springer, 1986.
[9]Belhumeur P N, Hespanha J P, Kriegman D J. Eigenfaces Vs. Fisherfaces: Recognition Using Class Specific Linear Projection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711-720.
[10]He Qingbo. Time–frequency Manifold for Nonlinear Feature Extraction in Machinery Fault Diagnosis[J].Mechanical Systems and Signal Processing,2013, 35(1/2):200-218.
[11]苏祖强, 汤宝平, 刘自然,等. 基于正交半监督局部fisher判别分析的故障诊断[J]. 机械工程学报,2014,50(18): 7-13.
Su Zuqiang, Tang Baoping, Liu Ziran, et al. Fault Diagnosis Method Based on Orthogonal Semi-supervised Local Fisher Discriminant Analysis[J]. Journal of Mechanical Engineering, 2014,50(18): 7-13.
[12]孙斌, 刘立远, 牛翀,等. 基于局部切空间排列和K-最近邻分类器的转子故障诊断方法[J]. 中国机械工程,2015,26(1): 74-78.
Sun Bin, Liu Liyuan, Niu Chong, et al. Rotor Fault Diagnosis Methods Based on Local Tangent Space Alignment and K - Nearest Neighbor Classifier[J]. China Mechanical Engineering, 2015,26(1): 74-78.
[13]He Xiaofei, Niyogi P. Locality Preserving Projections[C]// Proceeding of the 17th Annual Conference on Neural Information Processing Systems. Cambridge: MIT Press, 2003: 153-160.
[14]Yang Jian, Zhang David, Yang Jingyu, et al. Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(4): 650-664.
[15]Jiang Li, Shi Tielin, Xuan Jiangping. Fault Diagnosis of Rolling Bearings Based on Marginal Fisher Analysis[J]. Journal of Vibration and Control, 2014, 20(3): 470-480.
[16]Loparo K A. Bearings Vibration Data Se[2014-10-28]. http: //Csegroups.Case.Edu/Bearingdatacenter/Home.
|