[1]方刚,雷丽萍,曾攀. 金属塑性成形过程延性断裂的准则及其数值模拟[J]. 机械工程学报, 2002, 38(增): 21-25.
Fang Gang, Lei Liping, Zeng Pan. Criteria of Metal Ductile Fracture and Numerical Simulation for Metal Forming[J]. Chinese Journal of Mechanical Engineering, 2002, 38(S): 21-25.
[2]方刚,曾攀. 金属板料冲裁过程的有限元模拟[J]. 金属学报, 2001,37(6): 653-657.
Fang Gang, Zeng Pan. Finite Element Simulation for Blanking Process of Sheet Metal[J]. Acta Metallrugica Sinica, 2001,37(6): 653-657.
[3]周梦成,冯飞,胡建华,等. AZ31B 镁合金断裂应变与应力三轴度的关系研究[J]. 中国机械工程, 2015, 26(5): 694-698.
Zhou Mengcheng, Feng Fei, Hu Jianhua, et al. Research on Relationship of AZ31B Magnesium Alloy Fracture Strain and Stress Triaxiality[J]. China Mechanical Engineering, 2015, 26(5): 694-698.
[4]Li H, Fu M W, Lu J, et al. Ductile Fracture: Experiments and Computations[J]. International Journal of Plasticity, 2011, 27(2): 147-180.
[5]董岚枫,钟约先,马庆贤,等. 大型水轮机主轴锻造过程裂纹缺陷的预防[J]. 清华大学学报(自然科学版), 2008, 48(5): 765-768.
Dong Lanfeng, Zhong Yuexian, Ma Qingxian, et al. Prevention of Forging Cracks in Heavy Hydro-Generator Shafts[J]. Journal of Tsinghua University (Science and Technology), 2008, 48(5): 765-768.
[6]段兴旺,刘建生,郑晓华,等. 316LN钢裂纹萌生的临界损伤值[J]. 塑性工程学报, 2013, 20(3): 60-64.
Duan Xingwang, Liu Jiansheng, Zheng Xiaohua, et al. Critical Damage Value of 316LN Steel Crack Initiation[J]. Journal of Plasticity Engineering, 2013, 20(3): 60-64.
[7]王雪凤,吴任东,邓晨曦,等. 新型耐热高强钢P91的高温力学性能[J]. 机械工程学报, 2008, 44(6): 243-247.
Wang Xuefeng, Wu Rendong, Deng Chenxi, et al. Mechanical Properties of New Heat-resistant High-tensile Steel P91 at High Temperature [J]. Journal of Mechanical Engineering, 2008, 44(6): 243-247.
[8]束国刚,赵彦芬,薛飞,等. P91 钢蠕变损伤试验研究与数值模拟[J]. 中国电机工程学报, 2010, 30(23): 103-107.
Shu Guogang, Zhao Yanfen, Xue Fei, et al. Experiment Research and Numerical Simulation of Creep Damage for P91 Steel[J]. Proceedings of the CSEE, 2010,30(23): 103-107.
[9]Yaghi A H, Hyde T H, Becker A A, et al. Residual Stress Simulation in Welded Sections of P91 Pipes[J]. Journal of Materials Processing Technology, 2005, 167(2): 480-487.
[10]蔺永诚,陈明松. 高性能大锻件控形控性理论及应用[M]. 北京:科学出版社, 2013.
[11]Freudenthal A M. The Inelastic Behavior of Solids[J]. New York: Wiley, 1950.
[12]Cockcroft M G, Latham D J. Ductility and the Workability of Metals[J]. J. Inst. Metals, 1968, 96(1): 33-39.
[13]Oh S I, Chen C C, Kobayashi S. Ductile Fracture in Axisymmetric Extrusion and Drawing—part 2: Workability in Extrusion and Drawing[J]. Journal of Manufacturing Science and Engineering, 1979, 101(1): 36-44.
[14]Oyane M. Criteria of Ductile Fracture Strain[J]. Bulletin of JSME, 1972, 15(90): 1507-1513.
[15]陈劼实,周贤宾. 成形极限预测韧性断裂准则及屈服准则的影响[J]. 北京航空航天大学学报, 2006, 32(8): 969-973.
Chen Jieshi, Zhou Xianbin. Suitability of Some Ductile Fracture Criteria and Yield Criteria in Forming Limit Prediction[J]. Journal of Beijing University of Aeronautics and Astronautics, 2006, 32(8): 969-973.
[16]虞松,陈军,阮雪榆. 韧性断裂准则的试验与理论研究[J]. 中国机械工程, 2006, 17(19): 2049-2052.
Yu Song, Chen Jun, Ruan Xueyu. Experimental and Theoretical Research on Ductile Fracture Criterion[J]. China Mechanical Engineering, 2006, 17(19): 2049-2052.
[17]Bao Y, Wierzbicki T. A Comparative Study on Various Ductile Crack Formation Criteria[J]. Journal of Engineering Materials and Technology, 2004, 126(3): 314-324.
[18]Goijaerts A M, Govaert L E, Baaijens F. Evaluation of Ductile Fracture Models for Different Metals in Blanking[J]. Journal of Materials Processing Technology, 2001, 110(3): 312-323.
[19]Quan G, Wang F, Liu Y, et al. Evaluation of Varying Ductile Fracture Criterion for 7075 Aluminum Alloy[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(3): 749-755.
[20]Taupin E, Breitling J, Wu W, et al. Material Fracture and Burr Formation in Blanking Results of FEM Simulations and Comparison with Experiments[J]. Journal of Materials Processing Technology, 1996, 59(1): 68-78.
|