[1]何卫东, 李力行, 李军. 机器人用RV传动中摆线轮受力分析[J]. 大连铁道学院学报, 1999, 20(2): 49-53.
HE Weidong, LI Lixing, LI Jun. Force Analysis on Cycloidal Gear of the RV Drive Used in Robot[J]. Journal of Dalian Railway Institute, 1999, 20(2): 49-53.
[2]王嘉宁, 顾京君, 言勇华. 摆线轮基本齿形参数与RV 减速器啮合刚度的关系[J]. 机械设计与研究, 2017, 33(4):63-67.
WANG Jianing, GU Jingjun, YAN Yonghua. Research on the Relationship between the Basic Tooth Profile Parameters of Cycloid Wheel and the Meshing Stiffness of RV Reducer[J]. Machine Design and Research, 2017, 33(4):63-67.
[3]WANG Jianing, GU Jingjun, YAN Yonghua.Study on the Relationship between the Stiffness of RV Reducer and the Profile Modification Method of Cycloid-pin Wheel[C]∥Intelligent Robotics and Applications-ICIRA 2016. Berlin: Springer Verlag, 2016:721-735.
[4]YU Hongliu, YI Jinhua, HU Xin, et al. Study on Teeth Profile Modification of Cycloid Reducer Based on Non-Hertz Elastic[J]. Mechanics Research Communications, 2013, 48:87-92.
[5]HSIEH C F. The Effect on Dynamics of Using a New Transmission Design for Eccentric Speed Reducers[J]. Mechanism and Machine Theory, 2014, 80:1-16.
[6]LI Shuting. Design and Strength Analysis Methods of the Trochoidal Gear Reducers[J]. Mechanism and Machine Theory, 2014, 81:140-154.
[7]HSIEH C F. Traditional Versus Improved Designs for Cycloidal Speed Reducers with a Small Tooth Difference: the Effect on Dynamics[J]. Mechanism and Machine Theory, 2015, 86:15-35.
[8]DO T P, ZIEGLER P, EBERHARD P. Review on Contact Simulation of Beveloid and Cycloid Gears and Application of a Modern Approach to Treat Deformations[J]. Mathematical and Computer Modelling of Dynamical Systems, 2015, 21(4):359-388.
[9]许立新, 杨玉虎. 一种摆线针轮传动多齿啮合接触特性分析方法[J]. 中国机械工程, 2016, 27(10):1382-1388.
XU Lixin, YANG Yuhu. A General Method for Multi-tooth Contact Analysis of Cycloid-pin Gear Transmission[J]. China Mechanical Engineering, 2016, 27(10):1382-1388.
[10]XU Lixin, YANG Yuhu. Dynamic Modeling and Contact Analysis of a Cycloid-pin Gear Mechanism with a Turning Arm Cylindrical Roller Bearing [J]. Mechanism and Machine Theory, 2016, 104:327-349.
[11]TSAI S J, CHANG L C, HUANG C H. Design of Cycloid Planetary Gear Drives with Tooth Number Difference of Two: a Comparative Study on Contact Characteristics and Load Analysis[J]. Forsch Ingenieurwes, 2017, 81:325-336.
[12]WEI Bo, WANG Jiaxu, ZHOU Guangwu. Mixed Lubrication Analysis of Modified Cycloidal Gear Used in the RV Reducer[J]. Journal of Engineer Tribolody, 2016, 230(2):121-134.
[13]MANDELBROT B B. The Fractal Geometry of Nature[M]. New York: W. H. Freeman and Company, 1982:35-45.
[14]BROWN C A, SAVARY G. Describing Ground Surface Texture Using Contact Profilometry and Fractal Analysis[J]. Wear, 1991, 141(2):211-226.
[15]MAJUMDAR A, BHUSHAN B. Role of Fractal Geometry in Roughness Characterization and Contact Mechanics of Surfaces[J]. Journal of Tribology, 1990, 112:205-216.
[16]MAJUMDAR A, BHUSHAN B. Fractal Model of Elastic-Plastic Contact between Rough Surfaces[J]. Journal of Tribology, 1991, 113:1-11.
[17]MORAG Y, ETSION I.Resolving the Contradiction of Asperities Plastic to Elastic Mode Transition in Current Contact Models of Fractal Rough Surfaces[J]. Wear, 2007, 262(5):624-629.
[18]MIAO Xiaomei, HUANG Xiaodiao. A Complete Contact Model of a Fractal Rough Surface[J]. Wear, 2014, 309(1):146-151.
[19]陈奇, 黄康, 张彦, 等. 基于分形接触模型的齿轮接触强度影响参数分析[J]. 中国机械工程, 2013, 16(16):2208-2211.
CHEN Qi, HUANG Kang, ZHANG Yan, et al. Analysis of Influence Parameters on Gear’s Contact Strength Based on Fractal Contact Model[J]. China Mechanical Engineering, 2013, 16(16):2208-2211.
[20]CHEN Qi, FAN Xu, PENG Liu, et al. Research on Fractal Model of Normal Contact Stiffness between Two Spheroidal Joint Surfaces Considering Friction Factor[J]. Tribology International, 2016, 97:256-264.
[21]HUANG Kang, XIONG Yangshou, WANG Tao. Research on the Dynamic Response of High-contact-ratio Spur Gears Influenced by Surface Roughness under EHL Condition[J]. Applied Surface Science, 2017, 392:8-18.
[22]BERRY M V, LEWIS Z V. On the Weierstrass-Mandelbrot Fractal Function[J]. Proceedings of the Royal Society, 1980, 370:459-484.
[23]CHEN Q, ZHAO Y, MA Y B, et al. Testing Experiment of Characteristic-scale Coefficient about Cylinder Surface[J]. Journal of Mechanical Strength, 2014, 36(5):687-697.
[24]葛世荣, 朱华. 摩擦学的分形[M]. 北京: 机械工业出版社, 2005:122.
GE Shirong, ZHU Hua, Fractal in Tribology[M]. Beijing: China Machine Press, 2005:122.
[25]田红亮, 陈甜敏, 郑金华, 等. 平行轴圆柱副接触分析[J]. 西安交通大学学报, 2016, 50(1):1-8.
TIAN Hongliang, CHEN Tianmin, ZHENG Jinhua, et al. Contact Analysis of Cylindrical Pair with Parallel Axes[J]. Journal of Xi’an Jiao Tong University, 2016, 50(1):1-8.
[26]韩炬, 李威, 王志军. 采用分形理论与微分几何的摆线轮形貌模型[J]. 西安交通大学学报, 2017, 51(11):97-105.
HAN Ju, LI Wei, WANG Zhijun. Surface Morphology Models of Cycloid and Pin Teeth Based on Fractal Theory and Differential Geometry[J]. Journal of Xi’an Jiao Tong University, 2017, 51(11):97-105.
[27]李小彭, 郭浩, 刘井年, 等. 考虑摩擦的结合面法向刚度分形模型及仿真[J]. 振动、测试与诊断, 2013, 33(2): 210-213.
LI Xiaopeng, GUO Hao, LIU Jingnian, et al. Fractal Model and Simulation of Normal Contact Stiffness Considering the Friction between Joint Surfaces[J]. Journal of Vibration, Measurement & Diagnosis, 2013, 33(2): 210-213.
[28]LIU Peng, ZHAO Han, HUANG Kang, et al. Research on Normal Contact Stiffness of Rough Surface Considering Friction Based on Fractal Theory[J]. Applied Surface Science, 2015, 349:43-48.
[29]DORIANA H H, GAN Yixiang, EINAN I. Static Friction at Fractal Interfaces[J]. Tribology International, 2016, 93:229-238.
[30]KOGUT L, ETSION I. Elastic-Plastic Contact Analysis of a Sphere and a Rigid Flat[J]. ASME Journal of Applied Mechanics, 2002, 69:657-662.
[31]成雨, 原园, 甘立, 等. 尺度相关的分形粗糙表面弹塑性接触力学模型[J]. 西北工业大学学报, 2016, 34(3):485-492.
CHENG Yu, YUAN Yuan, GAN Li, et al. The Elastic-Plastic Contact Mechanics Model Related Scale of Rough Surface[J]. Journal of Northwestern Polytechnical University, 2016, 34(3):485-492.
[32]李小彭, 鞠行, 赵光辉, 等. 考虑摩擦因素的结合面切向接触刚度分形预估模型及其仿真分析[J]. 摩擦学学报, 2013, 33(5):463-468.
LI Xiaopeng, JU Xing, ZHAO Guanghui, et al. Fractal Prediction Model for Tangential Contact Stiffness of Joint Surface Considering Friction Factors and Its Simulation Analysis[J]. Tribology, 2013, 33(5):463-468.
[33]陈奇, 黄守武, 张振, 等. 考虑摩擦因素的两圆柱体表面接触承载能力的分形模型研究[J]. 机械工程学报, 2016, 52(7):114-121.
CHEN Qi, HUANG Shouwu, ZHANG Zhen, et al. Research on Fractal Contact Model for Contact Carrying Capacity of Two Cylinders’ Surfaces Considering Friction Factors[J]. Journal of Mechanical Engineering, 2016, 52(7):114-121.
[34]丁雪兴, 严如奇, 贾永磊. 基于基底长度的粗糙表面分形接触模型的构建与分析[J]. 摩擦学学报, 2014, 34(4):341-347.
DING Xuexing, YAN Ruqi, JIA Yonglei. Construction and Analysis of Fractal Contact Mechanics Model for Rough Surface Based on Base Length[J]. Tribology, 2014, 34(4):341-347. |