康熙1,2;戴建生1,3
出版日期:
2020-01-10
发布日期:
2020-01-17
基金资助:
KANG Xi1,2;DAI Jiansheng1,3
Online:
2020-01-10
Published:
2020-01-17
摘要: 生产力发展与工程技术革新要求机构具备可自重组与可重构及“一机多用”的功能,以满足复杂工况需求。可重构机构具有可变活动度和可变构态,可以满足多任务、多工况与多功能的要求,然而,决定其设计方法的演变内涵与分岔机理的研究目前仍不为学者们充分了解。从变胞机构的演变与分岔机理的角度,以旋量理论、李群与李代数及微分流形为主要工具,揭示了机构演变内涵及运动与约束空间的内在关联关系;探究了机构演变中的分岔机理与可控奇异位形,回顾了变胞机构与折纸及折展机构的历史渊源,综述了变胞机构的构型设计、性能综合与新型设计理念及其创新应用。
中图分类号:
康熙, 戴建生, . [学科发展]机构学中机构重构的理论难点与研究进展——变胞机构演变内涵、分岔机理、设计综合及其应用[J]. 中国机械工程.
KANG Xi, DAI Jiansheng, . Theoretical Difficulties and Research Progresses of Mechanism Reconfiguration in Mechanisms—Evolution Connotation, Furcation Principle, Design Synthesis and Application of Metamorphic Mechanisms[J]. China Mechanical Engineering.
[1]SCHWAB K. The Fourth Industrial Revolution[M]. New York:Crown Business, 2017.
[2]戴建生. 机构学与机器人学的几何基础与旋量代数[M]. 北京:高等教育出版社, 2014. DAI Jiansheng. Geometrical Foundations and Screw Algebra for Mechanisms and Robotics[M]. Beijing:Higher Education Press, 2014. [3]戴建生. 旋量代数与李群李代数[M]. 北京:高等教育出版社, 2014. DAI Jiansheng. Screw Algebra and Lie Groups and Lie Algebra[M]. Beijing:Higher Education Press, 2014. [4]DAI J S. Survey and Business Case Study of the Dextrous Reconfigurable Assembly and Packaging System (D-RAPS)[C]∥Proceedings of the Science and Technology Report. Port Sunlight:Unilever Research, 1996:PS960321. [5]DAI J S. Conceptual Design of the Dexterous Reconfigurable Assembly and Packaging System (D-RAPS)[C]∥Proceedings of the Science and Technology Report. Port Sunlight:Unilever Research, 1996:PS960326. [6]DAI J S, REES JONES J. Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds[C]∥Proceedings of 25th ASME Biennial Mechanisms Conference. Atlanta:ASME, 1998:DETC98/MECH5902. [7]DAI J S, REES JONES J. Mobility in Metamorphic Mechanisms of Foldable/Erectable Kinds[J]. Journal of Mechanical Design, Transactions of the ASME, 1999, 121(3):375-382. [8]WOHLHART K. Kinematotropic Linkages[M].Recent Advances in Robot Kinematics. Dordrecht:Springer, 1996:359-368. [9]MRUTHYUNJAYA T S. Kinematic Structure of Mechanisms Revisited[J]. Mechanism and Machine Theory, 2003, 38(4):279-320. [10]DAI J S, ZHANG Q X. Metamorphic Mechanisms and Their Configuration Models[J]. Chinese Journal of Mechanical Engineering, 2000, 13(3):212-218. [11]YAN H, LIU N. Joint-codes Representations for Mechanisms and Chains with Variable Topologies[J]. Transactions of the Canadian Society for Mechanical Engineering, 2003, 27(1):131-143. [12]LEE C, HERV J M. Discontinuously Movable Seven-link Mechanisms via Group-algebraic Approach[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2005, 219(6):577-587. [13]戴建生, 丁希仑, 邹慧君. 变胞原理和变胞机构类型[J]. 机械工程学报, 2005, 41(6):7-12. DAI Jiansheng, DING Xilun, ZOU Huijun. Foundamentals and Categorization of Metamorphic Mechanisms[J]. Journal of Mechanical Engineering, 2005, 41(6):7-12. [14]BALL R S. A Treatise on the Theory of Screws[M]. Cambridge:Cambridge University Press, 1900. [15]HUNT K H. Kinematic Geometry of Mechanisms[M]. Oxford:Oxford University Press, 1978. [16]GIBSON C, HUNT K. Geometry of Screw Systems—1:Screws, Genesis and Geometry[J]. Mechanism and Machine Theory, 1990, 25(1):1-10. [17]RICO-MARTNEZ J M, DUFFY J. Orthogonal Spaces and Screw Systems[J]. Mechanism and Machine Theory, 1992, 27(4):451-458. [18]DAI J S, REES JONES J. Interrelationship between Screw Systems and Corresponding Reciprocal Systems and Applications[J]. Mechanism and Machine Theory, 2001, 36(5):633-651. [19]DAI J S, REES JONES J. Null-space Construction Using Cofactors from a Screw-algebra Context[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2002, 458(2024):1845-1866. [20]DAI J S, REES JONES J. A Linear Algebraic Procedure in Obtaining Reciprocal Screw Systems[J]. Journal of Robotic Systems, 2003, 20(7):401-412. [21]DAI J S, HUANG Z, LIPKIN H. Mobility of Overconstrained Parallel Mechanisms[J]. Journal of Mechanical Design, Transactions of the ASME, 2006, 128(1):220-229. [22]黄真, 刘婧芳, 李艳文. 论机构的自由度[M]. 北京:科学出版社, 2011. HUANG Zhen, LIU Jingfang, LI Yanwen. OnMobility of Mechanisms[M]. Beijing:Science Press, 2011. [23]GAN D, DAI J S, LIAO Q. Mobility Change in Two Types of Metamorphic Parallel Mechanisms[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2009, 1(4):041007. [24]ZHANG K, DAI J S, FANG Y. Topology and Constraint Analysis of Phase Change in the Metamorphic Chain and Its Evolved Mechanism[J]. Journal of Mechanical Design, Transactions of the ASME, 2010, 132(12):121001. [25]GAN D, DAI J S, LIAO Q. Constraint Analysis on Mobility Change of a Novel Metamorphic Parallel Mechanism[J]. Mechanism and Machine Theory, 2010, 45(12):1864-1876. [26]ZHANG K, DAI J S, FANG Y. Constraint Analysis and Bifurcated Motion of the 3PUP Parallel Mechanism[J]. Mechanism and Machine Theory, 2012, 49:256-269. [27]GAN D, DAI J S. Geometry Constraint and Branch Motion Evolution of 3-PUP Parallel Mechanisms with Bifurcated Motion[J]. Mechanism and Machine Theory, 2013, 61:168-183. [28]KANG X, DAI J S. Relevance and Transferability for Parallel Mechanisms with Reconfigurable Platforms[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2019, 11(3):031012.
[29]DIMENTBERG F M. The Screw Calculus and Its Applications in Mechanics (in Russian)[M]. Moscow:Izad, Nauka, 1965. [30]ROTH B. Finite-position Theory Applied to Mechanism Synthesis[J]. Journal of Applied Mechanics, 1967, 34(3):599-605. [31]YANG A T. Displacement Analysis of Spatial Five-link Mechanisms Using (3×3) Matrices with Dual-number Elements[J]. Journal of Engineering for Industry, 1969, 91(1):152-156. [32]TSAI L W, ROTH B. Incompletely Specified Displacements:Geometry and Spatial Linkage Synthesis[J]. Journal of Engineering for Industry, 1973, 95(2):603-611. [33]HUNT K H, PARKIN I A. Finite Displacements of Points, Planes, and Lines via Screw Theory[J]. Mechanism and Machine Theory, 1995, 30(2):177-192. [34]HUANG C, ROTH B. Analytic Expressions for the Finite Screw Systems[J]. Mechanism and Machine Theory, 1994, 29(2):207-222. [35]DAI J S, HOLLAND N, KERRD R. Finite Twist Mapping and Its Application to Planar Serial Manipulators with Revolute Joints[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 1995, 209(4):263-271. [36]DAI J S. Finite Displacement Screw Operators with Embedded Chasles' Motion[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2012, 4(4):041002. [37]LERBET J. Analytic Geometry and Singularities of Mechanisms[J]. ZAMM—Journal of Applied Mathematics and Mechanics, 1998, 78(10):687-694. [38]RICO J M, GALLARDO J, DUFFY J. Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains[J]. Mechanism and Machine Theory, 1999, 34(4):559-586. [39]MLLER A. Higher Derivatives of the Kinematic Mapping and Some Applications[J]. Mechanism and Machine Theory, 2014, 76:70-85. [40]HERV J M. The Lie Group of Rigid Body Displacements, a Fundamental Tool for Mechanism Design[J]. Mechanism and Machine theory, 1999, 34(5):719-730. [41]LEE C C, HERV J M. Cartesian Parallel Manipulators with Pseudoplanar Limbs[J]. Journal of Mechanical Design, Transactions of the ASME, 2007, 129(12):1256-1264. [42]LI Q, HERV J M. Parallel Mechanisms with Bifurcation of Schoenflies Motion [J]. IEEE Transactions on Robotics, 2009, 25(1):158-164. [43]MENG J, LIU G, LI Z. A Geometric Theory for Analysis and Synthesis of Sub-6 DOF Parallel Manipulators[J]. IEEE Transactions on Robotics, 2007, 23(4):625-649. [44]ANGELES J. The Qualitative Synthesis of Parallel Manipulators[J]. Journal of Mechanical Design, Transactions of the ASME, 2004, 126(4):617-624. [45]ZLATANOV D, BONEV I A, GOSSELIN C. Constraint Singularities of Parallel Mechanisms[C]∥Proceedings of the IEEE International Conference on Robotics and Automation. Washington D C:IEEE, 2002:496-502. [46]BANDYOPADHYAY S, GHOSAL A. Analysis of Configuration Space Singularities of Closed-loop Mechanisms and Parallel Manipulators[J]. Mechanism and Machine Theory, 2004, 39(5):519-544.
[47]YUAN X, ZHOU L, DUAN Y. Singularity and Kinematic Bifurcation Analysis of Pin-bar Mechanisms Using Analogous Stiffness Method[J]. International Journal of Solids and Structures, 2012, 49(10):1212-1226. [48]QIN Y, DAI J S, GOGU G. Multi-furcation in a Derivative Queer-square Mechanism[J]. Mechanism and Machine Theory, 2014, 81:36-53. [49]KANG X, ZHANG X, DAI J S. First and Second-order Kinematics-based Constraint System Analysis and Reconfiguration Identification for the Queer-square Mechanism[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2019, 11(1):011004. [50]WEI J, DAI J S. Lie Group Based Type Synthesis Using Transformation Configuration Space for Reconfigurable Parallel Mechanisms with Bifurcation between Spherical Motion and Planar Motion[J]. Journal of Mechanical Design, Transactions of the ASME, 2019, 142(6):063302. [51]戴建生. 可重构机构与机器人[M]. 北京:高等教育出版社, 2020. DAI Jiansheng. Reconfigurable Mechanisms and Robots[M]. Beijing:Higher Education Press, 2020. [52]DAI J S, REES JONES J. New Models for Identification of Distinct Configurations of Cartons during Erection and Assembly[C]∥Proceedings of the Science and Technology Report. Port Sunlight:Unilever Research, 1997. [53]DAI J S, REES JONES J. Structure and Mobility of Cartons in a Packaging Process[C]∥Proceedings of the Science and Technology Report. Port Sunlight:Unilever Research, 1997. [54]DAI J S, REES JONES J. Theory on Kinematic Synthesis and Motion Analysis of Cartons[C]∥Proceedings of the Science and Technology Report. Port Sunlight:Unilever Research, 1997. [55]CUNDY H M, ROLLETT A P. Mathematical Models[M]. New York:Tarquin Publications, 1951. [56]DAI J S, REES JONES J. Kinematics and Mobility Analysis of Carton Folds in Packing Manipulation Based on the Mechanism Equivalent[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2002, 216(10):959-970. [57]LIU H, DAI J S. Carton Manipulation Analysis Using Configuration Transformation[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2002, 216(5):543-555. [58]LIU H, DAI J S. An Approach to Carton-folding Trajectory Planning Using Dual Robotic Fingers[J]. Robotics and Autonomous Systems, 2003, 42(1):47-63. [59]DUBEY V N, DAI J S. A Packaging Robot for Complex Cartons[J]. Industrial Robot: an International Journal, 2006, 33(2):82-87. [60]CANNELLA F, DAI J S. Crease Stiffness and Panel Compliance of Carton Folds and Their Integration in Modelling[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2006, 220(6):847-855. [61]DAI J S, CANNELLA F. Stiffness Characteristicsof Carton Folds for Packaging[J]. Journal of Mechanical Design, Transactions of the ASME, 2008, 130(2):022305. [62]QIU C, AMINZADEH V, DAI J S. Kinematic Analysisand Stiffness Validation of Origami Cartons[J]. Journal of Mechanical Design, Transactions of the ASME, 2013, 135(11):111004. [63]YAO W, DAI J S. Dexterous Manipulation of Origami Cartons with Robotic Fingers Based on the Interactive Configuration Space[J]. Journal of Mechanical Design, Transactions of the ASME, 2008, 130(2):022303. [64]DAI J S, MEDLAND A J, MULLINEUX G. Carton Erection Using Reconfigurable Folder Mechanisms[J]. Packaging Technology and Science, 2009, 22(7):385-395. [65]DAI J S, CALDWELL D G. Origami-based Robotic Paper-and-Board Packaging for Food Industry[J]. Trends in Food Science and Technology, 2010, 21(3):153-157. [66]YAO W, CANNELLA F, DAI J S. Automatic Folding of Cartons Using a Reconfigurable Robotic System[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(3):604-613. [67]WEI G, DAI J S. Origami-inspired Integrated Planar-Spherical Overconstrained Mechanisms[J]. Journal of Mechanical Design, Transactions of the ASME, 2014, 136(5):051003. [68]QIU C, ZHANG K, DAI J S. Repelling-screw Based Force Analysis of Origami Mechanisms[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2016, 8(3):031001. [69]ZHANG K, QIU C, DAI J S. An Extensible Continuum Robot with Integrated Origami Parallel Modules[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2016, 8(3):031010. [70]SALERNO M, ZHANG K, MENCIASSI A, et al. A Novel 4-DOF Origami Grasper with an SMA-Actuation System for Minimally Invasive Surgery[J]. IEEE Transactions on Robotics, 2016, 32(3):484-498. [71]RODRIGUEZ-LEAL E, DAI J S. From Origami to a New Class of Centralized 3-DOF Parallel Mechanisms [C]∥Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference. Las Vegas, 2007:4-7. [72]RODRIGUEZ-LEAL E, DAI J S, PENNOCK G R. A Centralized 5-RSP Parallel Mechanism[C]∥ ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York, 2008:1259-1267. [73]DAI J S, LI D, ZHANG Q, et al. Mobility Analysis of a Complex Structured Ball Based on Mechanism Decomposition and Equivalent Screw System Analysis[J]. Mechanism and Machine Theory, 2004, 39(4):445-458. [74]李端玲, 戴建生, 张启先, 等. 一种变胞机构——魔术花球的自由度分析[J]. 机械工程学报, 2002, 38(9):12-16.
LI Duanling, DAI Jiansheng, ZHANG Qixian, et al. Mobility of a Kind of Metamorphic Mechanism—Magic Ball[J]. Journal of Mechanical Engineering, 2002, 38(9):12-16. [75]DING X, YANG Y. Reconfiguration Theory of Mechanism from a Traditional Artifact[J]. Journal of Mechanical Design, Transactions of the ASME, 2010, 132(11):114501.
[76]DING X, LU S. Fundamental Reconfiguration Theory of Chain-type Modular Reconfigurable Mechanisms[J]. Mechanism and Machine Theory, 2013, 70:487-507. [77]WEI G, DING X, DAI J S. Mobility and Geometric Analysis of the Hoberman Switch-pitch Ball and Its Variant[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2010, 2(3):031010. [78]DING X, YANG Y, DAI J S. Topology and Kinematic Analysis of Color-changing Ball[J]. Mechanism and Machine Theory, 2011, 46(1):67-81. [79]COSTABILE V, LUMACA F, MARSILI P, et al. New Antenna Deployment, Pointing and Supporting Mechanism[C]∥Proceedings 30th Aerospace Mechanisms Symposium. Rome, 1996:65-76. [80]丁希仑. 未来大型航天器的基础:空间可折展机构[J]. 科技导报, 2014, 32(23):84. DING Xilun.The Future Foundation of Large Spacecraft:Spatial Deployable Mechanisms[J]. Science and Technology Review, 2014, 32(23):84. [81]EKIGUCHI K. The Book of Boxes[M]. New York:Kodansha International, 1988. [82]WOHLHART K. Regular Polyhedral Linkages[C]∥Proceedings of the 2nd Workshop on Computational Kinematics. Sophia Antipolis, 2001:4-6. [83]WOHLHART K. Irregular Polyhedral Linkages[C]∥Proceedings of the 11th World Congress in Mechanism and Machine Science. Tianjin, 2004:1083-1087. [84]KIPER G, SYLEMEZ E, KISISEL A U . Polyhedral Linkages Synthesized Using Cardan Motion along Radial Axes[C]∥12th IFToMM World Congress. Besancon, 2007:17-21. [85]KIPER G, SYLEMEZ E, KI塁ISEL A U . A Family of Deployable Polygons and Polyhedra[J]. Mechanism and Machine Theory, 2008, 43(5):627-640. [86]WEI G, DAI J S. A Spatial Eight-bar Linkage and Its Association with the Deployable Platonic Mechanisms[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2014, 6(2):021010. [87]WEI G, CHEN Y, DAI J S. Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms with Radially Reciprocating Motion[J]. Journal of Mechanical Design, Transactions of the ASME, 2014, 136(9):091003. [88]WEI G, DAI J S. An Overconstrained Eight-bar Linkage and Its Associated Fulleroid-like Deployable Platonic Mechanisms[C]∥ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York, 2014. [89]WEI G, DAI J S. Reconfigurable and Deployable Platonic Mechanisms with a Variable Revolute Joint[M]∥LENAR C I C J, KHATIB O eds. IAdvances in Robot Kinematics. Cham: Springer, 2014:485-495. [90]XIU H, WANG K, WEI G, et al. A Sarrus-like Overconstrained Eight-bar Linkage and Its Associated Fulleroid-like Platonic Deployable Mechanisms[J]. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science, 2018:0954406218816343. [91]孙学敏, 姚燕安, 李锐明, 等. 一类平面对心折展机构的构造方法[J]. 机械工程学报, 2019, 55(11):176-185. SUN Xuemin, YAO Yanan, LI Ruiming, et al. A Method for Constructing Planar Center-coincident Deployable Mechanisms[J]. Journal of Mechanical Engineering, 2019, 55(11):176-185. [92]赵冲, 郭宏伟, 邓宗全, 等. 变构型桁架式卫星平台结构设计与性能评价[J]. 哈尔滨工业大学学报, 2018, 50(1):11-17. ZHAO Chong,GUO Hongwei, DENG Zongquan, et al. Structure Design and Performance Evaluation of Variable Configuration Truss-type Satellite Platform[J]. Journal of Harbin Institute of Technology, 2018, 50(1):11-17. [93]刘荣强, 金光, 刘兆晶, 等. 多模块可展机构运动学分析及驱动设计[J]. 红外与激光工程, 2014, 43(增刊1):65-71. LIU Rongqiang, JIN Guang, LIU Zhaojing, et al. Kinematics Analysis and Driving Design of Multi-Module Deployable Structure[J]. Infrared and Laser Engineering, 2014, 43(S1):65-71. [94]杨佳鑫, 吕胜男, 丁希仑. 基于 Bennett 机构的柱面拟合可展机构设计及分析[J]. 深空探测学报, 2017, 4(4):340-345. YANG Jiaxin, LYU Shengnan, DING Xilun. Design and Analysis of Approximate Cylindrical Deployable Mechanism with Bennett Linkages[J]. Journal of Deep Space Exploration, 2017, 4(4):340-345. [95]ZHANG K, DAI J S. A Kirigami-inspired 8R Linkage and Its Evolved Overconstrained 6R Linkages with the Rotational Symmetry of Order Two[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2014, 6(2):021007. [96]TANG Z, DAI J S. Bifurcated Configurations and Their Variations of an 8-bar Linkage Derived from an 8-kaleidocycle[J]. Mechanism and Machine Theory, 2018, 121:745-754. [97]LI S, DAI J S. Structure Synthesis of Single-driven Metamorphic Mechanisms Based on the Augmented Assur Groups[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2012, 4(3):031004. [98]MA X, ZHANG K, DAI J S. Novel Spherical-Planar and Bennett-Spherical 6R Metamorphic Linkages with Reconfigurable Motion Branches[J]. Mechanism and Machine Theory, 2018,128:628-647. [99]SONG Y, MA X, DAI J S. A Novel 6R Metamorphic Mechanism with Eight Motion Branches and Multiple Furcation Points[J]. Mechanism and Machine Theory, 2019, 142:103598. [100]FENG H, CHEN Y, DAI J S, et al. Kinematic Study of the General Plane-symmetric Bricard Linkage and Its Bifurcation Variations[J]. Mechanism and Machine Theory, 2017, 116:89-104. [101]CHAI X, DAI J S. Three Novel Symmetric Waldron-Bricard Metamorphic and Reconfigurable Mechanisms and Their Isomerization[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2019, 11(5):051011. [102]李端玲, 戴建生, 张启先, 等. 基于构态转换的变胞机构结构综合[J]. 机械工程学报, 2002, 38(7):12-16. LI Duanling, DAI Jiansheng, ZHANG Qixian, et al. Structure Synthesis of Metamorphic Mechanisms Based on the Configuration Transformations[J]. Journal of Mechanical Engineering, 2002, 38(7):12-16. [103]王德伦, 戴建生. 变胞机构及其综合的理论基础[J]. 机械工程学报, 2007, 43(8):32-42. WANG Delun, DAI Jiansheng. Theoretical Foundation of Metamorphic Mechanisms and Its Synthesis[J]. Journal of Mechanical Engineering, 2007, 43(8):32-42. [104]张克涛. 变胞并联机构的结构设计方法与运动特性研究[D]. 北京:北京交通大学, 2010. ZHANG Ketao. Structural Design Method and Kinematic Characteristics of Metamorphic Parallel Mechanisms[D]. Beijing:Beijing Jiaotong University, 2010. [105]VALSAMOS C, MOULIANITIS V, ASPRAGATHOS N. Kinematic Synthesis of Structures for Metamorphic Serial Manipulators[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2014, 6(4):041005. [106]YE W, FANG Y, ZHANG K, et al. Mobility Variation of a Family of Metamorphic Parallel Mechanisms with Reconfigurable Hybrid Limbs[J]. Robotics and Computer-Integrated Manufacturing, 2016, 41:145-162. [107]XU K, LI L, BAI S, et al. Design and Analysis of a Metamorphic Mechanism Cell for Multistage Orderly Deployable/Retractable Mechanism[J]. Mechanism and Machine Theory, 2017, 111:85-98. [108]TIAN H, MA H, MA K. Method for Configuration Synthesis of Metamorphic Mechanisms Based on Functional Analyses[J]. Mechanism and Machine Theory, 2018, 123:27-39. [109]WU Y, WANG H, LI Z. Quotient Kinematics Machines:Concept, Analysis, and Synthesis[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2011, 3(4):041004. [110]LI Q, HERV J M. Type Synthesis of 3-DOF RPR-equivalent Parallel Mechanisms[J]. IEEE Transactions on Robotics, 2014, 30(6):1333-1343. [111]RICO J M, CERVANTES-SNCHEZ J J, TADEO-CHVEZ A, et al. New Considerations on the Theory of Type Synthesis of Fully Parallel Platforms[J]. Journal of Mechanical Design, Transactions of the ASME, 2008, 130(11):112302. [112]KONG X, GOSSELIN C M. Type Synthesis of 3T1R 4-DOF Parallel Manipulators Based on Screw Theory[J]. IEEE Transactions on Robotics and Automation, 2004, 20(2):181-190. [113]HUANG Z, LI Q. Type Synthesis of Symmetrical Lower-mobility Parallel Mechanisms Using the Constraint-synthesis Method[J]. The International Journal of Robotics Research, 2003, 22(1):59-79. [114]GALLETTI C, FANGHELLA P. Single-loop Kinematotropic Mechanisms[J]. Mechanism and Machine Theory, 2001, 36(6):743-761. [115]GALLETTI C, FANGHELLA P. Multiloop Kinematotropic Mechanisms[J]. Mechanism and Machine Theory, 2002, 36(6):743-761. [116]FANGHELLA P, GALLETTI C, GIANNOTTI E. Parallel Robots that Change Their Group of Motion[M]∥Advances in Robot Kinematics. Dordrecht:Springer, 2006:49-56. [117]REFAAT S, HERV J M, NAHAVANDI S, et al. Two-mode Overconstrained Three-DOFs Rotational-Translational Linear-motor-based Parallel-kinematics Mechanism for Machine Tool Applications[J]. Robotica, 2007, 25(4):461-466. [118]KONG X, GOSSELIN C M, RICHARD P L. Type Synthesis of Parallel Mechanisms with Multiple Operation Modes[J]. Journal of Mechanical Design, Transactions of the ASME, 2007, 129(6):595-601. [119]KONG X. Type Synthesis of 3-DOF Parallel Manipulators with Both a Planar Operation Mode and a Spatial Translational Operation Mode[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2013, 5(4):041015. [120]GOGU G. Maximally Regular T2R1-type Parallel Manipulators with Bifurcated Spatial Motion[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2011, 3(1):011010. [121]GAN D, DIAS J, SENEVIRATNE L. Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism with a Reconfigurable Revolute Joint[J]. Mechanism and Machine Theory, 2016, 96:239-254. [122]LOPEZ-CUSTODIO P C, DAI J S, RICO J M. Branch Reconfiguration of Bricard Loops Based on Toroids Intersections:Line-symmetric Case[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2018, 10(2):031103. [123]LOPEZ-CUSTODIO P C, DAI J S. Design of a Variable-mobility Linkage Using the Bohemian Dome[J]. Journal of Mechanical Design,Transactions of the ASME, 2019, 141(9):092303. [124]LOPEZ-CUSTODIO P C, DAI J S, RICO J M. Branch Reconfiguration of Bricard Loops Based on Toroids Intersections:Plane-symmetric Case[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2018, 10(2):031102. [125]QI Y, SUN T, SONGY. Type Synthesis of Parallel Tracking Mechanism with Varied Axes by Modeling Its Finite Motions Algebraically[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2017, 9(5):054504. [126]WEI J, DAI J S. Reconfiguration-aimed and Manifold-operation Based Type Synthesis of Metamorphic Parallel Mechanisms with Motion between 1R2T and 2R1T[J]. Mechanism and Machine Theory, 2019, 139:66-80. [127]PUCHETA M A, BUTTI A, TAMELLINI V, et al. Topological Synthesis of Planar Metamorphic Mechanisms for Low-voltage Circuit Breakers[J]. Mechanics Based Design of Structures and Machines, 2012, 40(4):453-468. [128]田娜, 丁希仑, 戴建生. 一种新型的变结构轮/腿式探测车机构设计与分析[J]. 机械设计与研究, 2004, 20(增刊1):268-270. TIAN Na, DING Xilun, DAI Jiansheng. Design and Analysis of a Novel Metamorphic Wheel-Legs Rover Mechanism[J]. Machine Design and Research, 2004, 20(S1):268-270. [129]CHEN I M, LI HS, CATHALA A. Mechatronic Design and Locomotion of Amoebot—a Metamorphic Underwater Vehicle[J]. Journal of Robotic Systems, 2003, 20(6):307-314. [130]CUI L, DAI J S. Posture, Workspace, and Manipulability of the Metamorphic Multifingered Hand with an Articulated Palm[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2011, 3(2):021001. [131]WEI G, DAI J S, WANG S, et al. Kinematic Analysis and Prototype of a Metamorphic Anthropomorphic Hand with a Reconfigurable Palm[J]. International Journal of Humanoid Robotics, 2011, 8(3):459-479. [132]WEI G, STEPHAN F, AMINZADEH V, et al. DEXDEB—Application of DEXtrous Robotic Hands for DEBoning Operation[M]∥Gearing Up and Accelerating Cross-fertilization between Academic and Industrial Robotics Research in Europe. Cham: Springer, 2014:217-235. [133]CARROLL D W, MAGLEBY S P, HOWELL L L, et al. Simplified Manufacturing through a Metamorhic Process for Compliant Ortho-Planar Mechanisms[C]∥Proceedings of the 2005 ASME International Mechanical Engineering Congress and Exposition. Orlando:ASME, 2005:389-399. [134]SHI X, ZHANG X, WANG X, et al. Configuration Design of Gripper Transfer System Based on Metamorphic Theory[C]∥Proceedings of the First ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robotics (ReMAR 2009). London:IEEE, 2009:229-233. [135]潘宇晨, 蔡敢为, 王红州, 等. 具有变胞功能的电动装载机构构态进化拓扑结构分析与基因建模[J]. 机械工程学报, 2014, 50(1):38-46. PAN Yuchen, CAI Ganwei, WANG Hongzhou, et al. Topological Analysis of Configuration Evolution and Biological Modeling of a Novel Type of Electric Loading Mechanism with Metamorphic Functions[J]. Journal of Mechanical Engineering, 2014, 50(1):38-46. [136]荣誉, 曲梦可. 基于变胞机构的性能可变机械臂研制[J]. 机械工程学报, 2018, 54(15):41-51. RONG Yu, QU Mengke.Design of Manipulator with Variable Performances Based on Metamorphic Mechanism[J] Journal of Mechanical Engineering, 2018, 54(15):41-51. [137]郭晓宁, 张敏. 一种变胞式作角机构设计[J]. 机械设计与研究, 2014, 30(4):21-23. GUO Xiaoning, ZHANG Min.The Design of a Metamorphic Corned Making Mechanism Used in Pulp Packaging[J] Machine Design and Research, 2014, 30(4):21-23. [138]李端玲, 丁希仑, 战强,等. 变胞机构的机构学理论及在航天中的应用[C]∥2002年深空探测技术与应用科学国际会议论文集. 北京:北京航空航天大学出版社, 2002:229-236. LI Duanling, DING Xilun, ZHAN Qiang, et al. Mechanism Theory of Metamorphic Mechanism and Its Application in Aerospace[C]∥Proceedings of 2002 International Conference on Deep Space Exploration Technology and Application Science. Beijing:Beijing University of Aeronautics and Astronautics Press, 2002:229-236. [139]ZHANG W, DING X, DAI J S. Design and Stabilityof Operating Mechanism for a Spacecraft Hatch[J]. Chinese Journal of Aeronautics, 2009, 22(4):453-458. [140]王珉, 王谢苗, 陈文亮,等. 具有变胞功能的自主移动制孔机构[J]. 北京航空航天大学学报, 2015, 41(3):398-404. WANG Min, WANG Xiemiao, CHEN Wenliang, et al. Autonomous Mobile Drilling Mechanism with Metamorphic Function[J] Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(3):398-404. [141]丁希仑, 徐坤. 一种新型变结构轮腿式机器人的设计与分析[J]. 中南大学学报(自然科学版), 2009, 40(增刊1):91-101. DING Xilun, XU Kun. Design and Analysis of a Novel Metamorphic Wheel-Legged Rover Mechanism[J]. Journal of Central South University(Seience and Technology), 2009, 40(S1):91-101. [142]DAI Z, SUN J. A Biomimetic Study of Discontinuous-constraint Metamorphic Mechanism for Gecko-like Robot[J]. Journal of Bionic Engineering, 2007, 4(2):91-95. [143]甄伟鲲, 康熙, 张新生, 等. 一种新型四足变胞爬行机器人的步态规划研究[J]. 机械工程学报, 2016, 52(11):26-33. ZHEN Weikun, KANG Xi, ZHANG Xinsheng, et al. Gait Planning of a Novel Metamorphic Quadruped Robot[J]. Journal of Mechanical Engineering,2016, 52(11):26-33. [144]TANG Z, QI P, DAI J S. Mechanism Design of a Biomimetic Quadruped Robot[J]. Industrial Robot: an International Journal, 2017, 44(4):512-520. [145]ZHANG C, DAI J S. Continuous Static Gait with Twisting Trunk of a Metamorphic Quadruped Robot[J]. Mechanical Sciences, 2018, 9(1):1-14. [146]ZHANG C, DAI J S. Trot Gait with Twisting Trunk of a Metamorphic Quadruped Robot[J]. Journal of Bionic Engineering, 2018, 15(6):971-981. [147]赵欣, 康熙, 戴建生. 四足变胞爬行机器人步态规划与运动特性[J]. 中南大学学报 (自然科学版), 2018, 49(9):2168-2177. ZHAO Xin, KANG Xi, DAI Jiansheng. Gait Planning and Motion Characteristics Analysis of a Metamorphic Quadruped Walking Robot[J]. Journal of Central South University(Science and Technology), 2018, 49(9):2168-2177. [148]ZHANG C, ZHANG C, DAI J S, et al. Stability Margin of a Metamorphic Quadruped Robot with a Twisting Trunk[J]. Journal of Mechanisms and Robotics, Transactions of the ASME, 2019, 11(6):064501. [149]AMINZADEH V, ZHANG K T, QIU C, et al. Conceptual Design of the Mechatronics and Reconfigurable Members for Light-duty Vehicles[R]. London: EU FP7, 2014. [150]王汝贵, 姜永圣, 蔡敢为. 一种变胞式码垛机器人机构设计分析[J]. 装备制造技术, 2013(2):18-20. WANG Rugui, JIANG Yongsheng, CAI Ganwei. Design and Analyses of a Metamorphic Palletizing Robot Mechanism[J]. Equipment Manufacturing Technology,2013(2):18-20. [151]陈捷, 王红州. 基于变胞原理的自动垃圾车装车机械手的设计与分析[J]. 制造业自动化, 2014, 36(16):141-144. CHEN Jie, WANG Hongzhou. Design and Account of Metamorphic Mechanism-based Automatically-loading Garbage Truck[J] Manufacturing Automation, 2014, 36(16):141-144. [152]李树军, 王洪光, 戴建生. 变胞机构的等效阻力梯度模型及其设计方法[J]. 机械工程学报, 2014, 50(1):18-23. LI Shujun, WANG Hongguang, DAI Jiansheng. The Equivalent Resistance Gradient Model of Metamorphic Mechanisms and the Design Method[J]. Journal of Mechanical Engineering, 2014, 50(1):18-23. [153]耿蒙. 绝缘子检测机器人仿足型移动机构[D]. 沈阳:东北大学, 2014. GENG Meng.The Foot-simulated Moving Mechanism of the Insulator Inspection Robot[D]. Shenyang:Northeastern University, 2014. [154]ZIESMER J A, VOGLEWEDE P A. Design, Analysis, and Testing of a Metamorphic Gripper[C]∥Proceedings of the ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. San Diego:ASME, 2009:775-780. [155]BRUZZONE L, BOZZINI G. A Flexible Joints Microassembly Robot with Metamorphic Gripper[J]. Assembly Automation, 2010, 30(3):240-247. [156]达选祥, 勾燕洁, 陈贵敏. 一种基于变胞变换的柔顺剥线钳[J]. 机械工程学报, 2015, 51(1):69-75. DA Xuanxiang, GOU Yanjie, CHEN Guimin.Compliant Wire Stripper Based on Metamorphic Transformation[J]. Journal of Mechanical Engineering, 2015, 51(1):69-75. [157]LUO H, WANG S. Multi-manipulation with a Metamorphic Instrumental Hand for Robot-assisted Minimally Invasive Surgery[C]∥Proceedings of the 2011 5th IEEE/ICME International Conference on Complex Medical Engineering. Harbin, 2011:363-368. [158]王汝贵. 一种多功能变胞机构及其实现方法:201210098594[P]. 2012-07-25. WANG Rugui. A Multifunctional Metamorphic Mechanism and Its Implementation:201210098594[P]. 2012-07-25. [159]李树军, 梁洪启. 基于变胞机构的折叠自行车:201420357606[P]. 2014-09-25. LI Shujun, LIANG Hongqi. Folding Bicycle Based on Metamorphic Mechanism:201420357606[P]. 2014-09-25. [160]甘晓萌, 赵广亮, 张琦, 等. 一种新型轮椅脚踏板机构设计分析[J]. 机械设计与制造, 2019 (8):61. GAN Xiaomeng, ZHAO Guangliang, ZHANG Qi, et al. Design and Analysis of a New Type of Wheelchair Pedal Mechanism[J] Machinery Design and Manufacture, 2019 (8):61. |
[1] | 李树军, 戴建生. 变胞机构的构态变换矩阵与运动副方位变胞[J]. 中国机械工程, 2010, 21(14): 1698-1703. |
[2] | 杨世明;金国光;贠今天;冯志友;. 变胞机构冲击运动的研究[J]. J4, 2009, 20(13): 0-1624. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||