[1] 马羽,王志宽,崔伟.SiGe集成电路工艺技术现状及发展趋势[J].微电子学,2018,48(4):508-514. MA Yu,WANG Zhikuan,CUI Wei.Current Status and Development Trend of SiGe Integrated Circuit Technology[J].Microelectronics,2018,48(4):508-514.
[2] 杨振良,汪俊亮,张洁,等.数据驱动的晶圆图缺陷模式识别方法[J].中国机械工程,2019,30(2):230-236. YANG Zhenliang, WANG Junliang, ZHANG Jie,et al. Data-driven Wafer Pattern Defect Pattern Recognition Method[J]. China Mechanical Engineering, 2019, 30(2):230-236.
[3] 许鸿伟,张洁,吕佑龙,等.基于改进的连续型深度信念网络的晶圆良率预测方法[J/OL].计算机集成制造系统:1-13[2020-03-18].http://kns.cnki.net/kcms/detail/11.5946.tp.20190315.0936.028.html. XU Hongwei, ZHANG Jie, LYU Youlong, et al. Wafer Yield Prediction Method Based on Improved Continuous Deep Belief Network[J/OL].[2020-03-18].http://kns.cnki.net/kcms/detail/11.5946.tp.20190315.0936.028.html.
[4] KOSTROS M, JAKAB F, JANITOR J. Overview of Big Data Analysis for Root Cause Determination and Problem Predictions[C]//2014 IEEE 12th International Conference on Emerging E-Learning Technologies and Applications. Stary Smokovec, Slovakia,2014:15127623.
[5] 韩敏,李宇,韩冰.基于改进结构保持数据降维方法的故障诊断研究[J/OL].自动化学报:1-11[2019-04-12].https://doi.org/10.16383/j.aas.c180138. HAN Min, LI Yu, HAN Bing. Research on Fault Diagnosis Based on Improved Structure to Maintain Data Dimensionality Reduction Method[J/OL].Acta AutomaticaSinica:1-11[2019-04-12].https://doi.org/10.16383/j.aas.c180138.
[6] 韩敏,张占奎.基于改进核主成分分析的故障检测与诊断方法[J].化工学报,2015,66(6):2139-2149. HAN Min,ZHANG Zhankui.Fault Detection and Diagnosis Based on Improved Kernel Principal Component Analysis[J].Journal of Chemical Industry and Engineering,2015,66(6):2139-2149.
[7] GARCIA-ALVAREZ D, FUENTE M J, SAINZ G I. Fault Detection and Isolation in Transient States Using Principal Component Analysis[J]. Journal of Process Control, 2012, 22(3):551-563.
[8] GONG Ruikun, YUAN Kui, NIAN Shanpo, et al. Real-time Reading Recognition of Digital Display Instrument Based on BP Neural Network[C]//20108th IEEE International Conference on Control and Automation. Xiamen,2010:11446536.
[9] WANG J, JIN Z, WAN S. Faults Diagnosis of Induction Motors Based on Artificial Neural Network[C]//International Conference on Control & Automation. Xiamen,2019:167.
[10] YU X, WANG X. Uncorrelated Discriminant Locality Preserving Projections[J]. IEEE Signal Processing Letters, 2008, 15:361-364.
[11] GUO W, YOU X, ZHU Z, et al. Locally Linear Embedding Based Dynamic Texture Synthesis[M]. Berlin:Springer, 2015.
[12] 廖文雄,曾碧,梁天恺,等. 面向高维数据的个人信贷风险评估方法[J]. 计算机工程与应用, 2020, 56(4):219-224. LIAO Wenxiong, ZENG Bi, LIANG Tiankai, et al. Personal Credit Risk Assessment Method for High-Dimensional Data[J]. Computer Engineering and Applications, 2020, 56(4):219-224.
[13] 车建国,赵赛. 基于数据深度的过程工业故障检测方法[J]. 计算机工程与应用, 2020, 56(1):265-271. CHE Jianguo, ZHAO Sai. Fault Detection Method Based on Data Depth for Process Industry[J].Computer Engineering and Application, 2020, 56(1):265-271.
[14] 林荫.基于KNN-SVM的垃圾邮件过滤模型[J].现代电子技术,2016,39(23):90-92. LIN Yin.Spam Mail Filtering Model Based on KNN-SVM[J].Modern Electronic Technique,2016,39(23):90-92.
[15] LI L S, HUANG D, ZHENG C, et al. Image Feature Extraction Based on an Extended Non-negative Sparse Coding Neural Network Model[C]//Advances in Neural Networks,Second International Symposium on Neural Networks. Chongqing, 2005:807-812.
[16] 王勇,周慧怡,俸皓,等.基于深度卷积神经网络的网络流量分类方法[J].通信学报,2018,39(1):14-23. WANG Yong,ZHOU Huiyi,FENG Hao,et al.A Network Traffic Classification Method Based on Deep Convolution Neural Network[J].Journal on Communications,2018,39(1):14-23.
[17] 孙萍,胡旭东,张永军. 结合注意力机制的深度学习图像目标检测[J]. 计算机工程与应用, 2019, 55(17):180-184. SUN Ping, HU Xudong, ZHANG Yongjun. Object Detection Based on Deep Learning and Attention Mechanism[J].Computer Engineering and Application, 2019, 55(17):180-184.
[18] 王培森,宋彦,戴礼荣.基于多通道视觉注意力的细粒度图像分类[J].数据采集与处理,2019,34(1):157-166. WANG Peisen,SONG Yan,DAI Lirong.Classification of Fine-grained Image Based on Multi-channel Visual Attention[J].Data Acquisition and Processing,2019,34(1):157-166.
[19] 杨燕,胡小鹏,吴思宁,等.基于注意力选择的局部特征匹配方法[J].大连理工大学学报,2019,59(2):186-193. YANG Yan, HU Xiaopeng, WU Sining,et al.Local Feature Matching Method Based on Attention Selection[J].Journal of Dalian University of Technology,2019,59(2):186-193.
[20] WANG Xiaoming, XIONG Jiulong, WANG Zhihu, et al. Approach for Image Segmentation Based on Improved Visual Attention Mechanism[C]//IEEE International Conference on Electronic Measurement & Instruments. Harbin,2013:14116726.
[21] 刘金利,张培玲. 改进LeNet-5网络在图像分类中的应用[J]. 计算机工程与应用, 2019, 55(15):32-37. LIU Jinli, ZHANG Peiling. Application of LeNet-5 Neural Network in Image Classification[J].Computer Engineering and Application, 2019, 55(15):32-37.
[22] OLIVEROS G A,WANG R,SEETHARAMAN S,et al. Modeling and Laboratory Scale Proof of Concept of the Horizontal Ribbon Growth Process:Application to Silicon Wafer Manufacturing[C]//38th IEEE Photovoltaic Specialists Conference.Austin,2012:13055682.
[24] 王文冠,沈建冰,贾云得.视觉注意力检测综述[J].软件学报,2019,30(2):416-439. WANG Wenguan, SHEN Jianbing, JIA Yunde.A Review of Visual Attention Detection[J].Journal of Software,2019,30(2):416-439.
[25] HAMKER F H. Predictions of a Model of Spatial Attention Using Sum-and Max-pooling Functions[J]. Neurocomputing, 2018, 56:329-343. |