[1] MATSUNMOTO K, JINNAI Y. Development of Variable Geometry Turbocharger for Diesel Passenger Car[C]//The 6th International Conference on Turbocharging and Air Management System. London, 1988:329-346.
[2] OKAZAKI Y, MATSUDAIRA N. A Case of Variable Geometry Turbocharger Development[C]//The Third International Conference on Turbocharging and Turbochargers. London, 1986:191-195.
[3] 马朝臣, 朱庆, 杨长茂, 等. 涡轮调节方式对增压柴油机匹配性能的影响[J]. 内燃机学报, 2000, 18(2):165-167. MA Chaochen, ZHU Qiang, YANG Changmao, et al. Effect of Turbine Adjustment Methods on Matching Performance of Turbocharged Diesel Engine[J]. Transactions of Csice, 2000, 18(2):165-167.
[4] BAINES N C. Fundamentals of Turbocharging[M]. White River Junction, Vermont:Concepts NREC, 2005.
[5] MORI I, KIYOHIRO S, KOICHI M, et al. A Study on Improving Fuel Consumption of Heavy-Duty Diesel Engine Specifically Designed for Long-Haul Trucks on Highway[J]. SAE Technical Paper, 2015-01-1256.
[6] WATSON N. Turbocharging the Internal Combustion Engine[M]. London:The Macmillan Press Ltd., 1982.
[7] LIU Y, YANG C, YANG D, et al. Investigations on the Aerodynamic Characteristics and Blade Excitations of the Radial Turbine with Pulsating Inlet Flow[J]. International Journal of Turbo & Jet-Engines, 2016, 33(1):69-80.
[8] LIU Yinhong, YANG Ce, QI Mingxu, et al. Shock, Leakage Flow and Wake Interactions in a Radial Turbine with Variable Guide Vanes[J]. ASME Paper, 2014, No. GT2014-25888.
[9] SPENCE S W T, DORAN W J, ARTT D W. Experimental Performance Evaluation of a 99.0 mm Radial Inflow Nozzled Turbine at Larger Stator-rotor Throat Area Ratios[J]. Proc. IMechE, Part A, 1999,213:205-218.
[10] DORAN W J, SPENCE S W T, ARTT D W. Experimental Performance Evaluation of a 99.0 mm Radial Inflow Nozzled Turbine with Varying Shroud Profiles[J]. Proc. IMechE, Part A, 2001,215:267-280.
[11] ALISTER S, SPENCE S W T, ARTT D W, et al. Experimental and Numerical Investigation of Varying Stator Design Paprameters for a Radial Turbine[J]. ASME Paper, 2006, No. GT2006-90152.
[12] TAMAKI H, GOTO S, UNNO M, IWAKAMI A, et al. The Effect of Clearance Flow of Variable Area Nozzle on Radial Turbine Performance[J]. ASME Paper, 2008, No. 2008-GT-50461.
[13] YANG Dengfeng, YANG Ce, LAO Dazhong, et al. A Detailed Investigation of a Variable Nozzle Turbine with Novel Forepart Rotation Guide Vane[J]. Proc. IMechE, Part D:Journal of Automobile Engineering, 2019, 233(4):994-1007.
[14] HU L J, YANG C, SUN H, et al. Numerical Analysis of Nozzle Clearance Effect on Turbine Performance[J]. Chin. J. Mech. Eng., 2011, 24(4):618-625.
[15] WALKINGSHAW J, SPENCE S, EHRHARD J, et al. A Numerical Study of the Flow Fields in a Highly Off-design Variable Geometry Turbine[J]. ASME Paper, 2010, No. GT2010-22669.
[16] CHEN H. Turbine Wheel Design for Garrett Advanced Variable Geometry Turbines for Commercial Vehicle Applications[C]//Proc. 8th International Conference of Turbochargers and Turbocharging. London, 2006:317-327.
[17] LEI Xinguo, QI Mingxu, SUN Harold, et al. Investigation on the Shock Control Using Grooved Surface in a Linear Turbine Nozzle[J]. Journal of Turbomachinery, 2017, 139(12):121008-121008-12. |