[1] PURWADI A, RIZQIAWAN A, KEVIN A, et al. State of Charge Estimation Method for Lithium battery Using Combination of Coulomb Counting and Adaptive System with Consideringthe Effect of Temperature[C]//The 2nd IEEE Conference on Power Engineering and Renewable Energy (ICPERE). Bali, Indonesia, 2014:91-95.
[2] SNIHIR I, REY W, VERBITSHIY E, et al. Battery Open-circuit Voltage Estimation by a Method of Statistical Analysis[J]. Journal of Power Source, 2006, 159(22):1484-1487.
[3] ORCHARD M, HEVIAKOCH P, ZHANG B, et al. Risk Measure for Particle-Filtering-Based State-of-charge Prognosis in Lithium-ion Batteries[J]. IEEE Transactions on Industrial Electronics, 2013, 60(11):5260-5269.
[4] CHEMALI E, KOLLMEYER P, PREINDL M, et al. State-of-charge Estimation of Li-ion Batteries Using Deep Neural Networks:a Machine Learning Approach[J]. Journal of Power Source, 2018, 400:242-255.
[5] YU Weibo, YANG Tingting, FENG Cuiyuan, et al. The Research of Power Battery SOC Estimation Based on Adaptive Kalman Filter Algorithm[J]. Applied Mechanics and Materials, 2013, 433-435:754-759.
[6] 李哲,卢兰光,欧阳明高. 提高安时积分法估算电池SOC精度的方法比较[J]. 清华大学学报(自然科学版),2010, 50(8):1293-1296. LI Zhe, LU Languang, OUYANG Minggao. Comparison of Methods for Improving SOC Estimation Accuracy through an Ampere-hour Integration Approach[J]. Journal of Tsinghua University (Science and Technology), 2010, 50(8):1293-1296.
[7] 史永胜,史禄培,魏浩,等. 一种改进型锂离子电池SOC估算方法[J]. 电子器件,2019,42(1):139-141. SHI Yongsheng, SHI Lupei, WEI Hao, et al. An Improved SOC Estimation Method for Lithium Ion Battery[J]. Chinese Journal of Electron Devices, 2019, 42(1):139-141.
[8] 谷苗,夏英超,田聪颖. 基于综合型卡尔曼滤波的锂离子电池荷电状态估算[J]. 电工技术学报,2019,34(2):420-426. GU Miao, XIA Yingchao, Tian Congying. Li-ion Battery State of Charge Estimation Based on Comprehensive Kalman Filter[J]. Transactions of China Electrotechnical Society, 2019, 34(2):420-426.
[9] XU Yidan, HU Minghui, FU Chunyun, et al. State of Charge Estimation for Lithium-ion Batteries Based on Temperature-dependent Second-order RC Model[J]. Electronics, 2019, 8(9):1012.
[10] LENG F, TAN C, YAZAMI R, et al. A Practical Framework of Electrical Based Online State-of-charge Estimation of Lithium Ion Batteries[J]. Journal of Power Source, 2014, 255:423-430.
[11] 方明杰,王群京. 基于扩展卡尔曼滤波算法的锂离子电池的SOC估算[J]. 电工电能新技术,2013,32(2):40-42. FANG Mingjie, WANG Qunjing. Strategy of Estimation State of Charge for Lithium Ion Battery Based on Extended Karlman Filter[J]. Advanced Technology of Electrical Engineering and Energy, 2013, 32(2):40-42.
[12] JOKIC I, ZECEVIC Z, KRSTAJIC B. State-of-Charge Estimation of Lithium-ion Batteries Using Extend Kalman Filter and Unscented Kalman Filter[C]//23rd International Scientific-professional Conference on Information Technology. Zabljak, Montenegro, 2018.
[13] 石刚,赵伟,刘珊珊. 基于无迹卡尔曼滤波估算电池SOC[J]. 计算机应用,2016,36(12):3492-3498. SHI Gang, ZHAO Wei, LIU Shanshan. Battery SOC Estimation Based on Unscented Kalman Filtering[J]. Journal of Computer Applications, 2016, 36(12):3492-3498.
[14] 申晓康. 基于无迹卡尔曼滤波算法的电动汽车动力电池SOC估计[D]. 西安:长安大学,2017. SHEN Xiaokang. SOC Estimation of Lithium Ion Battery Based on Unscented Kalman Filter[D]. Xi'an:Chang'an University, 2017.
[15] JOHNSON V H. Battery Performance Models in ADVISOR[J]. Journal of Power Source, 2002, 110(2):321-329.
[16] TING T O, MAN K L, LIM E G, et al. Tuning of Kalman Filter Parameters via Genetic Algorithm for State-of-charge Estimation in Battery Management System[J]. The Scientific World Journal, 2014:176052.
[17] 许可珍,金鹏. 基于优化的Thevenin模型的镍氢电池仿真[J]. 电池,2017,47(3):144-147. XU Kezhen, JIN Peng. Simulation of Ni-MH Battery Based on Optimized Thevenin Model[J]. Battery Bimonthly, 2017, 47(3):144-147.
[18] 杨阳,汤涛峰,秦大同,等. 电动汽车锂电池PNGV等效电路模型与SOC估算方法[J]. 系统仿真学报,2012, 24(4):938-942. YANG Yang, TANG Taofeng, QIN Datong,et al. PNGV Equivalent Circuit Model and SOC Estimation Algorithm of Lithium Batteries for Electric Vehicle[J]. Journal of System Simulation, 2012, 24(4):938-942. |