[1]HESS C, INANI A, LIN Y, et al. Scribe Characterization Vehicle Test Chip for Ultra Fast Product Wafer Yield Monitoring[C]∥IEEE International Conference on Microelectronic Test Structures. Austin, 2006:110-115.
[2]XU H, ZHANG J, LYU Y, et al. Hybrid Feature Selection for Wafer Acceptance Test Parameters in Semiconductor Manufacturing[J]. IEEE Access, 2020, 8:17320-17330.
[3]杨振良, 汪俊亮, 张洁, 等. 数据驱动的晶圆图缺陷模式识别方法[J]. 中国机械工程, 2019, 30(2):230-236.
YANG Zhenliang, WANG Junliang, ZHANG Jie, et al. Data Driven Wafer Pattern Defect Pattern Recognition Method[J]. China Mechanical Engineering, 2019, 30(2):230-236.
[4]黎敏, 谢玄, 陈泽, 等. 基于函数型数据分析的半导体生产过程监控[J]. 机械工程学报, 2018, 54(16):62-69.
LI Min, XIE Xuan, CHEN Ze, et al. Monitoring of Semiconductor Manufacturing Process Based on Functional Data Analysis [J]. Journal of Mechanical Engineering, 2018, 54(16):62-69.
[5]MAI K, TUCKERMANN M. SPC Based In-line Reticle Monitoring on Product Wafers[C]∥IEEE/SEMI Conference and Workshop on Advanced Semiconductor Manufacturing 2005. Munich, 2005:184-188.
[6]CHIEN C F, LEE P C, DOU R, et al. Modeling Collinear WATs for Parametric Yield Enhancement in Semiconductor Manufacturing[C]∥13th IEEE Conference on Automation Science and Engineering (CASE). Xi'an, 2017:739-743.
[7]CHANG P Y, CHEN K T, WANG C Y. Modeling of Wafer Die Yield by WAT Parameters[J]. Journal of Quality, 2011, 18(6):519-538.
[8]RAVI V, NAVEEN N, PANDEY M. Hybrid Classification and Regression Models via Particle Swarm Optimization Auto Associative Neural Network based Nonlinear PCA[J]. International Journal of Hybrid Intelligent Systems, 2013, 10(3):137-149.
[9]HSU S Y. A Hybrid Due-date Fulfilled Forecasting Based on Clustering and Decision Trees[C]∥IEEE International Conference on Industrial Engineering & Engineering Management.New York:IEEE, 2010:6-11.
[10]汪俊亮, 张洁. 大数据驱动的晶圆工期预测关键参数识别方法[J]. 机械工程学报, 2018,54(23):185-191.
WANG Junliang, ZHANG Jie. Big Data Driven Key Factor Identification for Cycle-time Forecasting of Wafer Lots in Semiconductor Wafer Fabrication System [J]. Journal of Mechanical Engineering, 2018, 54(23):185-191.
[11]NI J C, QIAO F, LI L, et al. A Memetic PSO Based KNN Regression Method for Cycle Time Prediction in a Wafer Fab[C]∥ World Congress on Intelligent Control & Automation. New York:IEEE, 2012:474-478.
[12]LI G Z, YANG J Y.Feature Selection for Ensemble Learning and Its Application[M]∥ Machine Learning in Bioinformatics. Hoboken :John Wiley & Sons, Inc., 2008.
[13]KHAKIFIROOZ M, CHIEN C F, CHEN Y J. Bayesian Inference for Mining Semiconductor Manufacturing Big Data for Yield Enhancement and Smart Production to Empower Industry 4.0[J]. Applied Soft Computing, 2018, 68:990-999.
[14]OOI M P L, JOO E K J, KUANG Y C, et al. Getting More from the Semiconductor Test:Data Mining with Defect-cluster Extraction[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(10):3300-3317.
[15]ZHANG W, LI X, ACAR E, et al. Multi-wafer Virtual Probe:Minimum-cost Variation Characterization by Exploring Wafer-to-Wafer Correlation[C]∥2010 IEEE/ACM International Conference on Computer-Aided Design (ICCAD). New York :IEEE, 2010:47-54.
[16]汪俊亮, 秦威, 张洁. 基于数据挖掘的晶圆制造交货期预测方法[J]. 中国机械工程, 2016, 27(1):105-108.
WANG Junliang, QIN Wei, ZHANG Jie. Data Mining for Orders' LT Forecasting in Wafer Fabrication[J]. China Mechanical Engineering, 2016, 27(1):105-108.
[17]ALELYANI S, TANG J, LIU H. Feature Selection for Clustering :a Review[J]. Encyclopedia of Database Systems, 2016, 21(3):110-121.
[18]LI Y, YANG Y, LI G, et al. A Fault Diagnosis Scheme for Planetary Gearboxes Using Modified Multi-scale Symbolic Dynamic Entropy and mRMR Feature Selection[J]. Mechanical Systems and Signal Processing, 2017, 91:295-312.
[19]JO I, LEE S, OH S, et al. Improved Measures of Redundancy and Relevance for mRMR Feature Selection[J]. Computers, 2019, 8(2):42.
[20]MAFARJA M, MIRJALILI S. Whale Optimization Approaches for Wrapper Feature Selection[J]. Applied Soft Computing, 2018, 62:441-453.
[21]JADHAV S, HE H, JENKINS K W, et al. Information Gain Directed Genetic Algorithm Wrapper Feature Selection for Credit Rating[J]. Applied Soft Computing, 2018, 69:541-553.
[22]VANAJA R, MUKHERJEE S. Novel Wrapper-based Feature Selection for Efficient Clinical Decision Support System[C]∥International Conference on Intelligent Information Technologies. Singapore, 2018:113-129.
[23]MISTRY K, ZHANG L, NEOH S C, et al. A Micro-GA Embedded PSO Feature Selection Approach to Intelligent Facial Emotion Recognition[J]. IEEE Transactions on Cybernetics, 2016, 47(6):1496-1509.
[24]LU H, CHEN J, YAN K, et al. A Hybrid Feature Selection Algorithm for Gene Expression Data Classification[J]. Neurocomputing, 2017, 256:56-62.
[25]HUANG C L, WANG C J. A GA-based Feature Selection and Parameters Optimization for Support Vector Machines[J]. Expert Systems with Applications, 2006, 31(2):231-240.
[26]WANG S, ZHANG N, WU L, et al. Wind Speed Forecasting Based on the Hybrid Ensemble Empirical Mode Decomposition and GA-BP Neural Network Method[J]. Renewable Energy, 2016, 94:629-636.
[27]UCI. Machine Learning Repository[EB/OL]. [2020-03-10].https:∥archive.ics.uci.edu/ml/index.php.
[28]GAO W, HU L, ZHANG P, et al. Feature Selection Considering the Composition of Feature Relevancy[J]. Pattern Recognition Letters, 2018, 112:70-74.
[29]YU C M, KUO C J, CHIU C L, et al. Product Mix Optimization under Required Cycle Time for Semiconductor Wafer Fabrication[C]∥2018 International Symposium on Semiconductor Manufacturing (ISSM). Tokyo, 2018:1-4. |