[1]TANAKA T, NAKA I, ABE T, et al. Studies on Lead-free Resin Overlay for Engine Bearings[C]// SAE 2006 World Congress. Detroit, Michigan, 2006:SAE2006-01-1104.
[2]SCHOUWENAARS R, JACOBO V H, ORTIZ A. Microstructural Aspects of Wear in Soft Tribological Alloys[J]. Wear, 2007,263: 727-735.
[3]THOMSON J, ZAVADIL R, SAHOO M. Development of a Lead-free Bearing Material for Aerospace Applications[J]. International Journal of Metalcasting, 2010,10:19-30.
[4]CHENG W W, CHERN Lin J H, JU C P. Bismuth Effect on Cast Ability and Mechanical Properties of Ti-6Al-4V Alloy Cast in Copper Mold[J]. Materials Letters, 2003,57:2591-2596.
[5]YOKOTA H, DESAKI T, HAYAKAWA H, et al. Newly Development Lead Free Copper Alloy Bushing for Fuel Injection Pump[C]//SAE 2006 World Congress. Detroit, Michigan, 2006: SAE2006-01-1103.
[6]GARDOS M N. The Synergistic Effects of Graphite on the Friction and Wear of MoS2 Films in Air[J]. Tribology Transactions, 1988,31(2):214-227.
[7]尹延国,林福东.无铅的铜铋轴承材料摩擦学特性研究[J].金属功能材料,2010,17(5):32-36.
YIN Yanguo, LIN Fudong. Tribological Characteristics of Lead-free Copper and Bismuth Bearing Materials[J]. Metalic Functional Materials, 2010,17(5):32-36.
[8]焦祥楠.无铅铜铋滑动轴承材料力学性能及摩擦磨损特性研究[D].合肥:合肥工业大学,2012.
JIAO Xiangnan. Mechanical Properties and Friction-Wear Characteristics of Lead-free Copper-bismuth Sliding Bearing Materials[D]. Hefei: Hefei University of Technology, 2012.
[9]SUEYOSHI H, YAMANO Y, INOUE K, et al. Mechanical Properties of Copper Sulfide-dispersed Lead-free Bronze[J]. Materials Transactions, 2009,50(4):776-781.
[10]陈淑娴,凤仪,李庶,等. MoS2含量对Cu-MoS2复合材料烧结过程的影响[J]. 材料热处理学报,2009,30(1):5-10.
CHEN Shuxian, FENG Yi, LI Shu, et al. Effect of MoS2 Content on Sintering Process of Cu-MoS2 Composites[J]. Transactions of Material Heat Treatment, 2009, 30(1):5-10.
[11]尹延国,李吉宁,张国涛,等. FeS/铜基复合材料的摩擦学性能[J]. 材料热处理学报,2017,38(2):1-8.
YIN Yanguo, LI Jining, ZHANG Guotao, et al. Tribological Properties of FeS/Copper-based Composites[J]. Transactions of Heat Treatment of Materials, 2017, 38(2):1-8.
[12]薛露. FeS/Cu基双金属轴承材料摩擦学性能研究[D]. 合肥:合肥工业大学,2017.
XUE Lu. Tribological Properties of FeS/Cu-based Bimetallic Bearing Materials[D]. Hefei: Hefei University of Technology, 2017.
[13]SATO T, HIRAI Y, FUKUI T, et al. Tribological Properties of Porous Cu Based Alloy Containing Nano Sized Sulfide Particles[J]. Journal of Advanced Mechanical Design[J]. Systems and Manufacturing, 2012,6(1):158-167.
[14]SATO T, HIRAI Y, MARUYAMA T, et al. Sintering and Tribological Properties of Lead-free Bronze Alloy for Friction Materials[J]. Power Metallurgy, 2011, 54(1): 10-12.
[15]LIU Haili, TANG Wenming, WANG Yuexia, et al. Structural Evolutions of the Fe-40Al-5Cr Powders during Mechanical Alloying and Subsequent Heat Treatment[J]. Journal of Alloys and Compounds, 2010,506(2):963-968.
[16]TANG Wenming, ZHANG Hong, WU Yucheng, et al. Mechanical Alloying Synthesis and Soldering Microstructures of Nanocrystalline Sn-3.5Ag-07Cu Alloy Powders[J]. Journal of Alloys and Compounds, 2010,497(1/2): 396-401.
[17]易峰. 机械合金化制备Ti-Al合金粉末及其材料性能的研究[D].昆明:昆明理工大学,2014.
YI Feng. Mechanical Alloying Preparation of Ti-Al Alloy Powder and Its Properties[D]. Kunming: Kunming University of Science and Technology, 2014.
[18]尹延国,曾庆勤,张国涛,等. 机械合金化改性FeS/Cu合金粉末的特性[J]. 中国机械工程, 2018, 29(6):738-742.
YIN Yanguo, ZENG Qinqin, ZHANG Guotao, et al. Characteristics of Mechanical Alloyed Modified FeS/Cu Alloy Powder[J]. China Mechanical Engineering, 2018, 29(6):738-742. |