[1]闫宏伟, 焦彪彪, 马建强, 等. 一种管道机器人的自适应主动螺旋式驱动机理分析[J]. 中国机械工程, 2018, 29(1):2-29.
YAN Hongwei, JIAO Biaobiao, MA Jianqiang, et al. Adaptive Active Screw Driving Mechanism Analysis for Pipeline Robots[J]. China Mechanical Engineering, 2018, 29(1):2-29.
[2]CHERNOUSKO F L. The Optimum Rectilinear Motion of a Two-mass System[J]. Journal of Applied Mathematics and Mechanics, 2002, 66(1):1-7.
[3]CHERNOUSKO F L. Analysis and Optimization of the Rectilinear Motion of a Two-body System[J]. Journal of Applied Mathematics and Mechanics, 2011, 75(5):493-500.
[4]CHERNOUSKO F L. Analysis and Optimization of the Motion of a Body Controlled by Means of a Movable Internal Mass[J]. Journal of Applied Mathematics and Mechanics, 2006, 70(6):819-842.
[5]CHERNOUSKO F L. On the Optimal Motion of a Body with an Internal Mass in a Resistive Medium[J]. Journal of Vibration and Control, 2008, 14(1/2):197-208.
[6]CHERNOUSKO F L. The Optimal Periodic Motions of a Two-mass System in a Resistant Medium[J]. Journal of Applied Mathematics and Mechanics, 2008, 72(2):116-125.
[7]ZIMMERMANN K, ZEIDIS I M, PIVOVAROV M, et al. Motion of Two Interconnected Mass Points under Action of Non-symmetric Viscous Friction[J]. Archive of Applied Mechanics, 2010, 80(11):1317-1328.
[8]FANG Hongbin, XU Jian. Dynamics of a Mobile System with an Internal Acceleration-controlled Mass in a Resistive Medium[J]. Journal of Sound and Vibration, 2011, 330(16):4002-4018.
[9]FANG Hongbin, XU Jian. Dynamic Analysis and Optimization of a Three-phase Control Mode of a Mobile System with an Internal Mass[J]. Journal of Vibration and Control, 2011, 17(1):19-26.
[10]BOLOTNIK N N, ZEIDIS I M, ZIMMERMANN K, et al. Dynamics of Controlled Motion of Vibration-driven Systems[J]. Journal of Computer and Systems Sciences International, 2006, 45(5):831-840.
[11]BOLOTNIK N N, FIGURINA T Y. Optimal Control of the Rectilinear Motion of a Rigid Body on a Rough Plane by Means of the Motion of Two Internal Masses[J]. Journal of Applied Mathematics and Mechanics, 2008, 72(2):126-135.
[12]VOLKOVA L Y, YATSUN S F. Simulation of the Plane Controlled Motion of a Three-mass Vibration System[J]. Journal of Computer and Systems Sciences International, 2012, 51:859-878.
[13]ZHAN Xiong, XU Jian, FANG Hongbin. A Vibration-driven Planar Locomotion Robot-shell[J]. Robotica, 2018, 36(9):1402-1420.
[14]ZHAN Xiong, XU Jian. Locomotion Analysis of a Vibration-driven System with Three Acceleration-controlled Internal Masses[J]. Advances in Mechanical Engineering, 2015, 7:1-12.
[15]ZHAN Xiong, XU Jian, FANG Hongbin. Planar Locomotion of a Vibration-driven System with Two Internal Masses[J]. Applied Mathematical Modeling, 2015, 40(2):871-885.[16]FANG Hongbin, XU Jian. Controlled Motion of a Two-module
Vibration-driven System Induced by Internal Acceleration-controlled Masses[J]. Archive of Applied Mechanics, 2012, 82(4):461-477.
[17]FANG Hongbin, XU Jian. Dynamics of a Three-module Vibration-driven System with Non-symmetric Coulombs Dry Friction[J]. Multibody System Dynamics, 2012, 27(4):455-485.
[18]CHEN Qi, XU Jian. Locomotion of Two Vibration-driven Modules Connected by a Mechanical Position Limiter[J]. International Journal of Mechanical Sciences, 2018, 137:252-262.
[19]AKBARIMAJD A, SOTOUDEH N. Design and Motion Analysis of Vibration-driven Small Robot Rizeh[J]. Advanced Robotics, 2014, 28(2):105-117.
[20]ZIMMERMANN K, ZEIDIS I M, BOLOTNIK N N, et al. Dynamics of a Two-module Vibration-driven System Moving along a Rough Horizontal Plane[J]. Multibody System Dynamics, 2009, 22(2):199-219.
[21]PROVATIDIS C G. On the Inertial Propulsion of Floating Objects Using Contra-rotating Masses[J]. Mechanics Research Communications, 2014, 62:117-122.
[22]MUSCIA R, SCIUTO G. Analytic Study of a New Conceptual Propulsion Device for Ships[J]. International Journal of Naval Architecture and Ocean Engineering, 2010, 2(2):75-86.
[23]MUSCIA R. Performance Improvement of a Vibration Driven System for Marine Vessels[J]. Multibody System Dynamics, 2016, 36(2):169-194. |