[1]马洪斌, 佟庆彬, 张亚男. 优化参数的变分模态分解在滚动轴承故障诊断中的应用[J]. 中国机械工程, 2018, 29(4):390-397.
MA Hongbin,TONG Qingbin, ZHANG Yanan. Applications of Optimization Parameters VMD to Fault Diagnosis of Rolling Bearings[J]. China Mechanical Engineering, 2018, 29(4):390-397.
[2]LEI Yaguo, QIAO Zijian, XU Xuefang, et al. An Underdamped Stochastic Resonance Method with Stable-state Matching for Incipient Fault Diagnosis of Rolling Element Bearings[J]. Mechanical Systems and Signal Processing, 2017, 94(18):148-164.
[3]赵志宏, 杨绍普. 一种基于样本熵的轴承故障诊断方法[J]. 振动与冲击, 2012, 31(6):136-140.
ZHAO Zhihong, YANG Shaopu. Sample Entropy-Based Roller Bearing Fault Diagnosis Method[J]. Journal of Vibration and Shock, 2012, 31(6):136-140.
[4]HAN Minghong, PAN Jiali. A Fault Diagnosis Method Combined with LMD, Sample Entropy and Energy Ratio for Roller Bearings[J]. Measurement, 2015, 76(12):7-19.
[5]COSTA M, GOLDBERGER A L, PENG C K. Multiscale Entropy Analysis of Complex Physiologic Time Series[J]. Physical Review Letters, 2007, 89(6):705-708.
[6]孙斌, 薛广鑫. 基于等距特征映射和支持矢量机的转子故障诊断方法[J]. 机械工程学报, 2012, 48(9):129-135.
SUN Bin, XUE Guangxin. Method of Rotor Fault Diagnosis Based on Isometric Feature Mapping and Support Vector Machine[J]. Journal of Mechanical Engineering, 2012, 48(9):129-135.
[7]ZHANG Yun, LI Benwei, WANG Wen, et al. Supervised Locally Tangent Space Alignment for Machine Fault Diagnosis[J]. Journal of Mechanical Science and Technology, 2014, 28(8):2971-2977.
[8]JIANG Quansheng, JIA Minping, HU Jianzhong, et al. Modified Laplacian Eigenmap Method for Fault Diagnosis[J].Chinese Journal of Mechanical Engineering, 2008, 21(3):90-93.
[9]WANG Fuan, JIANG Hongkai, SHAO Haidong, et al. An Adaptive Deep Convolutional Neural Network for Rolling Bearing Fault Diagnosis[J]. Measurement Science and Technology, 2017, 28(9):095005.
[10]HUANG Yixiang, LIU Xiao, LIU Chengliang, et al. Intrinsic Feature Extraction Using Discriminant Diffusion Mapping Analysis for Automated Tool Wear Evaluation[J]. Frontiers of Information Technology and Electronic Engineering, 2018, 19(11):1352-1361.
[11]HUANG Yixiang, ZHA X F, LEE J, et al. Discriminant Diffusion Maps Analysis: a Robust Manifold Learner for Dimensionality Reduction and Its Applications in Machine Condition Monitoring and Fault Diagnosis[J]. Mechanical Systems and Signal Processing, 2013, 34(1/2):277-297.
[12]叶金义, 谢小平, 梁烊炀, 等. 基于精细复合多尺度熵特征向量相关系数在滚动轴承故障诊断中应用[J]. 噪声与振动控制, 2018, 38(5):192-197.
YE Jinyi,XIE Xiaoping, LIANG Yangyang, et al. Rolling Bearing Fault Diagnosis Method Based on Refined Composite Multi-scale Entropy Eigenvector Correlation Coefficients[J]. Noise and Vibration Control, 2018, 38(5):192-197.
[13]姚成玉, 来博文, 陈东宁, 等. 基于最小熵解卷积-变分模态分解和优化支持向量机的滚动轴承故障诊断方法[J]. 中国机械工程, 2017, 28(24):3001-3012.
YAO Chengyu, LAI Bowen, CHEN Dongning, et al. Fault Diagnosis Method Based on MED-VMD and Optimized SVM for Rolling Bearings[J]. China Mechanical Engineering, 2017, 28(24):3001-3012.
[14]张成, 刘亚东, 李元. 基于判别式扩散映射分析的非线性特征提取[J]. 计算机应用, 2015, 35(2):470-475.
ZHANG Cheng, LIU Yadong, LI Yuan. Nonlinear Feature Extraction Based on Discriminant Diffusion Map Analysis[J]. Journal of Computer Applications, 2015, 35(2):470-475. |