詹梅1,2,3;雷煜东1,2,3;郑泽邦1,2,3
出版日期:
2020-11-25
发布日期:
2020-11-27
基金资助:
ZHAN Mei1,2,3;LEI Yudong1,2,3 ;ZHENG Zebang1,2,3
Online:
2020-11-25
Published:
2020-11-27
摘要: 集成计算材料工程通过模型化与计算实现对材料制备、加工和服役等过程的定量描述,成为实现力、热、电、磁、声场等单一/耦合外场作用下高性能构件精确塑性成形先进而有效的研究手段,近年来在精确塑性成形领域得到越来越广泛的应用。对集成计算材料工程在塑性成形过程多尺度建模、起皱和破裂两类缺陷预测方面的相关研究现状、主要进展及未来发展趋势进行了综述。首先论述了宏观、细观和微观三个尺度的模型在精确塑性成形领域中的应用现状,并分析了不同尺度模型间信息的传递方式;在此基础上讨论了利用集成计算材料工程研究制约精确塑性成形的起皱和破裂两类典型缺陷的预测方法,对比分析了目前主要的失稳起皱与损伤断裂模型的准确性;最后对集成计算材料工程在精确塑性成形中的未来发展趋势进行了展望。
中图分类号:
詹梅, 雷煜东, 郑泽邦, . [成形过程仿真优化与集成计算材料工程]集成计算材料工程在精确塑性成形中的应用现状与发展趋势[J]. 中国机械工程, DOI: 10.3969/j.issn.1004-132X.2020.22.003.
ZHAN Mei, LEI Yudong, , ZHENG Zebang, . Status and Development Tendency of Integrated Computational Materials Engineering in Precision Plastic Forming[J]. China Mechanical Engineering, DOI: 10.3969/j.issn.1004-132X.2020.22.003.
[1]杨合. 局部加载控制不均匀变形与精确塑性成形研究进展[J]. 塑性工程学报, 2008,15(2):12-20. YANG He. Advances in Control of Unequal Deformation by Locally Loading and Theories Related to Precision Plastic Forming[J]. Journal of Plasticity Engineering, 2008,15(2):12-20. [2]杨合.局部加载控制不均匀变形与精确塑性成形——原理和技术[M]. 北京:科学出版社, 2014:1-14. YANG He. Advances in Control of Unequal Deformation by Locally Loadingand Theories Related to Precision Plastic Forming—Principles and Techniques[M]. Beijing:Science Press, 2014:1-14. [3]SELLARS C M. Computer Modelling of Hot-working Processes[J]. Materials Science and Technology, 1985,1(4):325-332. [4]YADA H, SENUMA T. Resistance to Hot Deformation of Steel[J]. Journal of the Japan Society for Technology of Plasticity, 1988,27:33-44. [5]郭海龙,孙志超,杨合.挤压态7075铝合金再结晶经验模型及应用[J].中国有色金属学报,2013,23(6):1507-1515. GUO Hailong, SUN Zhichao, YANG He. Empirical Recrystallization Model and Its Application of As-extruded Aluminum Alloy 7075[J].Transactions of Nonferrous Metals Society of China,2013,23(6):1507-1515. [6]李晓丽. 钛合金高温变形时跨层次模型及数值模拟[D].西安:西北工业大学,2005. LI Xiaoli. Multi-scale Modeling and FE Simulation during High Temperature Deformation of the Titanium Alloys[D].Xian:Northwestern Polytechnical University,2005. [7]樊晓光. 钛合金复杂大件等温局部加载成形组织演变研究[D]. 西安:西北工业大学,2012. FAN Xiaoguang. Study on Microstructure Evolution during Isothermal Local Loading Forming of Large-scale Integral Complex Component of Titanium Alloys[D]. Xian:Northwestern Polytechnical University,2012. [8]杨旗,罗子健,刘东.应用模糊数学预测变形高温合金锻件晶粒度[J].中国机械工程,1999,10(7):832-324. YANG Qi, LUO Zijian, LIU Dong. Predicting Grain Size of Wrought Superalloys Forging Using Fuzzy Mathematics[J].China Mechanical Engineering,1999,10(7):832-324. [9]熊爱明,林海,李淼泉.TC6钛合金盘等温锻造时晶粒尺寸的数值模拟[J].中国机械工程,2003,14(9):791-794. XIONG Aiming, LIN Hai, LI Miaoquan. Numerical Simulation of Grain Evolution during Isothermal Forging of a TC6 Titanium Alloy[J].China Mechanical Engineering,2003,14(9):791-794. [10]LI Miaoquan, CHEN Dunjun, XIONG Aiming, et al. An Adaptive Prediction Model of Grain Size for the Forging of Ti-6Al-4V Alloy Based on Fuzzy Neural Networks[J]. Journal of Materials Processing Technology, 2002, 123(3):377-381. [11]熊爱明,薛善坤,李淼泉. TC4钛合金高温变形时微观组织变化的计算[J].塑性工程学报,2002,9(1):14-16. XIONG Aiming, XUE Shankun, LI Miaoquan. Microstructure Evolution and Modeling during Isothermal Deformation of TC4 Titanium Alloy[J].Journal of Plasticity Engineering, 2002,9(1):14-16. [12]LI Miaoquan, XIONG Aiming. New Model of Microstructural Evolution during Isothermal Forging of Ti-6Al-4V Alloy[J]. Metal Science Journal, 2013, 18(2):212-214. [13]LI Miaoquan, XIONG Aiming, HUANG Weichao, et al. Microstructural Evolution and Modelling of the Hot Compression of a TC6 Titanium Alloy[J]. Mater Characterization, 2003,49(3):203-209. [14]张青林,陈姗姗,李宏伟.金属塑性成形过程中的多尺度建模方法[J].材料导报,2014,28(21):115-118. ZHANG Qinglin, CHEN Shanshan, LI Hongwei. Multiscale Modeling Approaches for Metal Plastic Forming[J].Materials Review,2014,28(21):115-118. [15]HUNDERI O, RYUM N, WESTENGEN H. Computer Simulation of Grain Growth[J]. Acta Metallurgica, 1979, 27(2):161-165. [16]HESSELBARTH H W, GOBELI R. Simulation of Recrystallization by Cellular Automata[J]. Acta Metallurgica et Materialia, 1991, 39(9):2135-2143. [17]TAYLOR G I.Plastic Strain in Metals[J].Journal of Institute of Metals,1938,62:307-324. [18]CHUN Y B, SEMIATIN S L, HWANG S K. Monte Carlo Modeling of Microstructure Evolution during the Static Recrystallization of Cold-rolled, Commercial-purity Titanium[J]. Acta Materialia, 2006, 54(14):3673-3689. [19]LU Y H, LIU Z J, SHEN Y G. Investigation of Nanostructure Evolution and Twinning of Nanocrystallites in Ti-Bx-Ny Nanocomposite Thin Films Deposited by Magnetron Sputtering at Low Temperature by Means of HRTEM and Monte Carlo Simulations[J]. Acta Materialia, 2006, 54(11):2897-2905. [20]DIERK R. Introduction of a Scalable Three-dimensional Cellular Automaton with a Probabilistic Switching Rule for the Discrete Mesoscale Simulation of Recrystallization Phenomena[J]. Philosophical Magazine A, 1999, 79(10):2339-2358. [21]RAABE D, BECKER R C. Coupling of a Crystal Plasticity Finite Element Model with a Probabilistic Cellular Automaton for Simulating Primary Static Recrystallization in Aluminum[J]. Modelling and Simulation in Materials Science and Engineering, 2000, 8(4):445-462. [22]MUKHOPADHYAY P, LOECK M, GOTTSTEIN G. A Cellular Operator Model for the Simulation of Static Recrystallization[J]. Acta Materialia, 2007, 55(2):551-564. [23]JANSSENS K G F. An Introductory Review of Cellular Automata Modeling of Moving Grain Boundaries in Polycrystalline Materials[J]. Mathematics and Computers in Simulation, 2010, 80(7):1361-1381. [24]SACHS G. Plasticity Problems in Metals[J]. Zeitschrift Verein Deutcher Ingenieur, 1928, 72:734-736. [25]HILL R. A Self-consistent Mechanics of Composite Materials[J]. Journal of the Mechanics & Physics of Solids, 1965, 13(4):213-222. [26]HOUTTE P V. A Comprehensive Mathematical Formulation of an Extended Taylor-Bishop-Hill Model Featuring Relaxed Constraints, the Renouard-Wintenberger Theory and a Strain Rate Sensitivity Model[J]. Textures &Microstructures,1988,8:794184. [27]MOLINARI A, CANOVA G R, AHZI S. A Self Consistent Approach of the Large Deformation[J]. Acta Metallurgica, 1987, 35(12):2983-2994. [28]CHASTEL Y B , DAWSON P R. An Equilibrium-based Model for Anisotropic Deformations of Polycrystalline Materials[J]. Materials Science Forum,1994,157/162:1747-1752. [29]KOCKS U F, STOUT M G, ROLLET A D. The Influence of Texture on Strain Hardening[J]. Strength of Metals and Alloys, 1988, 1:25-34. [30]SARMA G B, DAWSON P R. Texture Predictions Using a Polycrystal Plasticity Model Incorporating Neighbor Interactions[J]. International Journal of Plasticity, 1996, 12(8):1023-1054. [31]HOUTTEP V , DELANNAY L , KALIDINDI S R.Comparison of Two Grain Interaction Models for Polycrystal Plasticity and Deformation Texture Prediction[J]. International Journal of Plasticity,2002, 18(3):359-377. [32]HOUTTE P V, LI S,SEEFELDT M, et al. Deformation Texture Prediction:from the Taylor Model to the Advanced Lamel Model[J]. International Journal of Plasticity, 2005, 21(3):589-624. [33]DELANNAY L, LOGE R E, CHASTEL Y, et al. Prediction of Intergranular Strains in Cubic Metals Using a Multisite Elastic-plastic Model[J]. Acta Materialia, 2002, 50(20):5127-5138. [34]DELANNAY L, KALIDINDI S R, HOUTTE P V. Quantitative Prediction of Textures in Aluminium Cold Rolled to Moderate Strains[J]. Materials Science & Engineering A, 2002, 336(1/2):233-244. [35]ENGLER O, CRUMBACH M, LI S. Alloy-dependent Rolling Texture Simulation of Aluminium Alloys with a Grain-interaction Model[J]. Acta Materialia, 2005, 53(8):2241-2257. [36]NEMAT-NASSER S, OBATA M. Rate-dependent, Finite Elasto-plastic Deformation of Polycrystals[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences,1986, 407(1833):343-375. [37]MOLINARI A, CANOVA G R, AHZI S. A Self Consistent Approach of the Large Deformation [J]. Acta Metallurgica, 1987, 35(12):2983-2994. [38]LEBENSOHN R A, TOME C N. A Self-consistent Anisotropic Approach for the Simulation of Plastic Deformation and Texture Development of Polycrystals:Application to Zirconium Alloys[J]. Acta Metallurgica et Materialia,1993, 41(9):2611-2624. [39]LIN Y, GILORMINI P, CASTANEDA P P. Variational Self-consistent Estimates for Texture Evolution in Viscoplastic Polycrystals[J]. Acta Materialia, 2003, 51(18):5425-5437. [40]毛卫民. 轧制织构的计算机模拟[J]. 北京科技大学学报, 1991,13(5):421-425. MAO Weimin. The Computer Simulation of Rolling Texture[J].Chinese Journal of Engineering, 1991, 13(5):421-425. [41]WU X, KALIDINDI S R, NECKER C, et al. Prediction of Crystallographic Texture Evolution and Anisotropic Stress-strain Curves during Large Plastic Strains in High Purity α-titanium Using a Taylor-type Crystal Plasticity Model[J]. Acta Materialia, 2007, 55(2):423-432. [42]LI A, PANG J, ZHAO J, et al. FEM-simulation of Machining Induced Surface Plastic Deformation and Microstructural Texture Evolution of Ti-6Al-4V Alloy[J]. International Journal of Mechanical Sciences, 2017, 123:214-223. [43]王贤贤.钛合金流动旋压的组织性能演变规律与机制[D].西安:西北工业大学,2019. WANG Xianxian.Microstrcture and Mechanical Property Evolution of Titanium Alloy in Flow Forming Process[D].Xian:Northwestern Polytechnical University, 2019. [44]KUBIN L P, CANOVA G, CONDAT M, et al. Dislocation Microstructures and Plastic Flow:a 3D Simulation[J]. Solid State Phenom, 1992, 23/24:455-472. [45]GIESSEN E V D, NEEDLEMAN A. Discrete Dislocation Plasticity:a Simple Planar Model[J]. Modelling and Simulation in Materials Science and Engineering, 1995, 3(5):689-735. [46]RAO S I, DIMIDUK D M, PARTHASARATHY T A, et al. Athermal Mechanisms of Size-dependent Crystal Flow Gleaned from Three-dimensional Discrete Dislocation Simulations[J]. Acta Materialia, 2008, 56(13):3245-3259. [47]DEVINCRE B, HOC T, KUBIN L. Dislocation Mean Free Paths and Strain Hardening of Crystals[J]. Science, 2008, 320(5884):1745-1748. [48]EI-AWADY J A, BINER S B, GHONIEM N M. A Self-consistent Boundary Element, Parametric Dislocation Dynamics Formulation of Plastic Flow in Finite Volumes[J]. Journal of the Mechanics and Physics of Solids, 2008, 56(5):2019-2035. [49]EI-AWADYJ A, JAAFAR A. Unravelling the Physics of Size-dependent Dislocation-mediated Plasticity[J]. Nature Communications, 2015, 6:5926. [50]DESHPANDE V S, NEEDLEMAN A, GIESSEN E V D. Plasticity Size Effects in Tension and Compression of Single Crystals[J]. Journal of the Mechanics and Physics of Solids, 2005, 53(12):2661-2691. [51]BALINT D S, DESHPANDE V S, NEEDLEMAN A, et al. Size Effects in Uniaxial Deformation of Single and Polycrystals:a Discrete Dislocation Plasticity Analysis[J]. Modelling and Simulation in Materials Science and Engineering, 2006, 14(3):409-422. [52]KONDORI B, NEEDLEMAN A, BENZERGA A A. Discrete Dislocation Simulations of Compression of Tapered Micropillars[J]. Journal of the Mechanics and Physics of Solids, 2017, 101:223-234. [53]TARLETON E, BALINT D S, GONG J, et al. A Discrete Dislocation Plasticity Study of the Micro-cantilever Size Effect[J]. Acta Materialia, 2015, 88:271-282. [54]QUEK S S, CHOOI Z H, WU Z, et al. The Inverse Hall-petch Relation in Nanocrystalline Metals:a Discrete Dislocation Dynamics Analysis[J]. Journal of the Mechanics and Physics of Solids, 2016, 88:252-266. [55]LI Z, HOU C, HUANG M, et al. Strengthening Mechanism in Micro-polycrystals with Penetrable Grain Boundaries by Discrete Dislocation Dynamics Simulation and Hall-petch Effect[J]. Computational Materials Science, 2009, 46(4):1124-1134. [56]ZHENG Z, DUNNE F P E. Effects of Grain Size, Orientation, and Source Density on Dislocation Configurational Energy Density[J]. JOM:the Journal of the Minerals, Metals & Materials Society, 2019, 71(8):2576-2585. [57]FOLLANSBEE P S, KOCKS U F. A Constitutive Description of the Deformation of Copper Based on the Use of the Mechanical Threshold Stress as an Internal State Variable[J]. Acta Metallurgica, 1988, 36(1):81-93. [58]AGNIHOTRI P K, ERIK V D G. On the Rate Sensitivity in Discrete Dislocation Plasticity[J]. Mechanics of Materials, 2015, 90:37-46. [59]ZHENG Z, BALINT D S, DUNNE F P E. Rate Sensitivity in Discrete Dislocation Plasticity in Hexagonal Close-packed Crystals[J]. Acta Materialia, 2016, 107:17-26. [60]WAHEED S, ZHENG Z, BALINT D S, et al. Microstructural Effects on Strain Rate and Dwell Sensitivity in Dual-phase Titanium Alloys[J]. Acta Mater,2019, 162:136-148. [61]WILSON D, ZHENG Z, DUNNE F P E. A Microstructure-sensitive Driving Force for Crack Growth[J]. Journal of the Mechanics and Physics of Solids,2018, 121:147-174. [62]ZHENG Z, BALINT D S, DUNNE F P E. Discrete Dislocation and Crystal Plasticity Analyses of Load Shedding in Polycrystalline Titanium Alloys[J]. International Journal of Plasticity, 2016, 87:15-31. [63]ZHENG Z, BALINT D S, DUNNE F P E. Dwell Fatigue in Two Ti Alloys:an Integrated Crystal Plasticity and Discrete Dislocation Study[J]. Journal of the Mechanics and Physics of Solids, 2016, 96:411-427. [64]ZHENG Z, BALINT D S, DUNNE F P E. Mechanistic Basis of Temperature-dependent Dwell Fatigue in Titanium Alloys[J]. Journal of the Mechanics and Physics of Solids, 2017, 107:185-203. [65]ZHENG Z, Prastiti N G, BALINT D S, et al. The Dislocation Configurational Energy Density in Discrete Dislocation Plasticity[J]. Journal of the Mechanics and Physics of Solids, 2019, 129:39-60. [66]RAABE D. Disrete Mesoscale Simulation of Recrystallization Microstructure and Texture Using a Stochastic Cellular Sutomation Approach[J]. Materials Science Forum, 1998, 273/275(2):169-174. [67]WU Chuan , YANG He , LI Hongwei. Modeling of Discontinuous Dynamic Recrystallization of a Near-α Titanium Alloy IMI834 during Isothermal Hot Compression by Combining a Cellular Automaton Model with a Crystal Plasticity Finite Element Method[J]. Computational Materials Science, 2013, 79:944-959. [68]LI H W, SUN X X, YANG H. A Three-dimensional Cellular Automata-crystal Plasticity Finite Element Model for Predicting the Multiscale Interaction among Heterogeneous Deformation, DRX Microstructural Evolution and Mechanical Responses in Titanium Alloys[J]. International Journal of Plasticity, 2016, 87:154-180. [69]XU Y, BALINT D S, DINI D. A Method of Coupling Discrete Dislocation Plasticity to the Crystal Plasticity Finite Element Method[J]. Modelling & Simulation in Materials ence & Engineering, 2016, 24(4):045007. [70]STRANO M, JIRATHEARANAT S, ALTAN T. Adaptive FEM Simulation for Tube Hydroforming:a Geometry-based Approach for Wrinkle Detection[J]. CIRP Annals—Manufacturing Technology, 2001, 50(1):185-190. [71]ABEDRABBO N, ZAMPALONI M A, POURBOGHRAT F. Wrinkling Control in Aluminum Sheet Hydroforming[J]. International Journal of Mechanical Sciences, 2005, 47(3):333-358. [72]YUAN S, WANG X, LIU G, et al. Control and Use of Wrinkles in Tube Hydroforming[J]. Journal of Materials Processing Technology, 2007, 182(1/3):6-11. [73]HALVORSEN F, AUKRUST T. Studies of the Mechanisms for Buckling and Waving in Aluminum Extrusion by Use of a Lagrangian FEM Software[J]. International Journal of Plasticity, 2006, 22(1):158-173. [74]KAWKA M, OLEJNIK L, ROSOCHOWSKI A, et al. Simulation of Wrinkling in Sheet Metal Forming[J]. Journal of Materials Processing Technology, 2001, 109(3):283-289. [75]KIM J, KANG S J, KANG B S. A Comparative Study of Implicit and Explicit FEM for the Wrinkling Prediction in the Hydroforming Process[J]. The International Journal of Advanced Manufacturing Technology, 2003, 22(7/8):547-552. [76]CHOI H H, HWANG S M, KANG Y H, et al. Comparison of Implicit and Explicit Finite-element Methods for the Hydroforming Process of an Automobile Lower Arm[J]. International Journal of Advanced Manufacturing Technology, 2002, 20(6):407-413. [77]HILL R. A General Theory of Uniqueness and Stability in Elastic-plastic Solids[J]. Journal of the Mechanics & Physics of Solids, 1958, 6(3):236-249. [78]HUTCHINSON J W. Plastic Wrinkling[J]. Adv. Appl. Mech., 1974, 14:67-144. [79]HUTCHINSON J W, NEALE K W. Wrinkling of Curved Thin Sheet Metal, Plastic Stability[M]. Paris:Presses Ponts et Chaussees, 1976. [80]HUTCHINSON J W, NEALE K W. Wrinkling of Curved Thin Sheet Metal, Plastic Instability[M]. Paris:Presses Ponts et Chaussees, 1985:71-78. [81]TUGCU P. Plate Wrinkling in the Plastic Range[J]. International Journal of Mechanical Sciences, 1991, 33(1):1-11. [82]TUGCU P. On Plastic Wrinkling Predictions[J]. International Journal of Mechanical Sciences, 1991, 33(7):529-539. [83]NEALE K W, TUGCU P. A Numerical Analysis of Wrinkle Formation Tendencies in Sheet Metals[J]. International Journal for Numerical Methods in Engineering, 1990, 30(8):1595-1608. [84]WANG C T, KINZEL G, ALTAN T. Wrinkling Criterion for an Anisotropic Shell with Compound Curvatures in Sheet Forming[J]. International Journal of Mechanical Sciences, 1994, 36(10):945-960. [85]KIM J B, YANG D Y. Prediction of Wrinkling Initiation in Sheet Metal Forming Processes[J]. Engineering Computations, 2003, 20(1):6-39. [86]KYRIAKIDES S, JU G T. Bifurcation and Localization Instabilities in Cylindrical Shells under Bending—Ⅰ. Experiments[J]. International Journal of Solids and Structures, 1992, 29(9):1117-1142. [87]JU G T, KYRIAKIDES S. Bifurcation and Localization Instabilities in Cylindrical Shells under Bending—Ⅱ. Predictions[J]. International Journal of Solids and Structures, 1992, 29(9):1143-1171. [88]de MAGALHAES J P C, FERRON G. Wrinkling of Anisotropic Metal Sheets under Deep-drawing:Analytical and Numerical Study[J]. Journal of Materials Processing Technology, 2004,155/156:1604-1610. [89]de MAGALHAES J P C. Wrinkling Predictions in the Deep-drawing Process of Anisotropic Metal Sheets[J]. Journal of Materials Processing Technology, 2002, 128(1/3):178-190. [90]AMEZIANE-HASSANI H, NEALE K W. On the Analysis of Sheet Metal Wrinkling[J]. International Journal of Mechanical Sciences, 1991, 33(1):13-30. [91]SENIOR B W. Flange Wrinkling in Deep-drawing Operations[J]. Journal of the Mechanics & Physics of Solids, 1956, 4(4):235-246. [92]梁炳文,胡世光. 板料成形塑性理论[M].北京: 机械工业出版社, 1987. LIANG Bingwen, HU Shiguang. Theory of Sheet Metal Forming Plasticity[M].Beijing:China Mechine Press, 1987. [93]ENDO J, MUROTA T, CATO K, et al. Theoretical Prediction on Non-axisymmetric Buckling Tube Nosing[J]. Advanced Technology of Plasticity,1987,11:1347-1353. [94]吉田正敏, 藤原昭文. アルミ中空矩形断面形材の曲げ加工におけるしわひずみ量予测[J]. 塑性と加工, 1997, 38(440):29-34. [95]LEMAITRE J. A Continuous Damage Mechanics Model for Ductile Fracture[J]. Transactions of the Asme Journal of Engineering Materials & Technology, 1985, 107(1):83-89. [96]LEMAITRE J, DESMORAT R, SAUZAY M. Anisotropic Damage Law of Evolution[J]. European Journal of Mechanics, A/Solids, 2000, 19(2):187-208. [97]FREUDENTHAL F A. The Inelastic Behavior of Solids[M]. New York:Wiley, 1950:230-236. [98]COCKROFT M G, LATHAM D J. Ductility and the Workability of Metals[J]. Journal of the Japan Institute of Metals, 1968, 96:33-39. [99]BRZZO P, DELUCA B, RENDINA R. A New Method for the Prediction of Formability Limit in Metal Sheets, Sheet Metal Forming and Formability[C]∥Proceeding of the Seventh Biennial Conference of the International Deep Drawing Research Group. Amsterdam, 1972. [100]ALEXANDROV S, WANG P T, ROADMAN R E. A Fracture Criterion of Aluminum Alloys in Hot Metal Forming[J]. Journal of Materials Processing Technology, 2005, 160:257-265. [101]KIM W J, HAN S W. Temperature and Strain Rate Effect Incorporated Failure Criteria for Sheet Forming of Magnesium Alloys[J]. Materials Science and Engineering:A,2008, 488:468-474. [102]KHAN A S, LIU H W. A New Approach for Ductile Fracture Prediction on Al 2024-T351 Alloy[J]. International Journal of Plasticity,2012, 35:1-12. [103]CLAUSEN B, HOPPERSTAD B. Flow and Fracture Characteristics of Aluminium Alloy AA5083-H116 as Function of Strain Rate, Temperature and Triaxiality[J]. Materials Science and Engineering A, 2004, 364:260-272. [104]GOLOGANU M, LEBLOND J B, DEVAUX J. Approximate Models for Ductile Metals Containing Non-spherical Voids-case of Axisymmetric Prolate Ellipsoidal Cavities[J]. Journal of the Mechanics and Physics of Solids, 1993, 41(11):1723-1754. [105]GOLOGANU M, LEBLOND J B, DEVAUX J. Approximate Models for Ductile Metals Containing Non-spherical Voids Case of Axisymmetric Oblate Ellipsoidal Cavities[J]. Journal of the Mechanics and Physics of Solids,1994, 116:290-297. [106]GOLOGANU M, LEBLOND J B, PERRIN G,et al. Recent Extensions of Gursons Model for Porous Ductile Metals[M]. New York:Springer Verlag, 1995:61-130. [107]MCCLINTOCK F A. A Criterion for DF by the Growing of Holes[J]. Journal of Applied Mechanics, 1968, 90:363-371. [108]RICE J R, TRACEY D M. On the Ductile Enlargement of Voids in Triaxial Stress Fields[J]. Journal of the Mechanics and Physics of Solids,1969, 17:201-217. [109]OYANE M, SATO T,OKIMOTO K, et al. Criteria for Ductile Fracture and Their Applications[J]. Journal of Mechanical Working Technology, 1980, 4(1):65-81. [110]GURSON A L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth:Part 1. Dash Yield Criteria and Flow Rules for Porous Ductile Media[J]. Journal of the Mechanics and Physics of Solids, 1969, 17(3):201-217. [111]CHU C C, NEEDLEMAN A. Void Nucleation Effects in Biaxial Stretched Sheets[J]. Journal of Engineering Material and Technology, 1980, 102 (3):249-256. [112]TVERGAARD V. Influence of Voids on Shear Band Instabilities under Plane Strain Conditions[J]. International Journal of Fracture, 1981, 17 (4):389-407. [113]TVERGAARD V. On Localization Ductile Materials Containing Spherical Voids[J]. International Journal of Fracture, 1982, 18(4):237-252. [114]王琪.基于细观损伤的7075铝合金HFQ温热成形性能研究[D]. 长春:吉林大学, 2016. WANG Qi. Study on HFQ Warm Formability of 7075 Aluminum Alloy Based on Mesoscopic Damage[D].Changchun:Jilin University, 2016. [115]邓姣. GH4169合金塑性变形过程中的断裂失效研究[D].长沙:中南大学, 2014. DENG Jiao. A Study on the Fracture of GH4169 Superalloy during Plastic Deformation[D].Changsha: Central South University, 2014. [116]NAHSHON K, HUTCHINSON J W. Modification of the Gurson Model for Shear Failure[J]. European Journal of Mechanics, 2008, 27(1):1-17. [117]XUE L. Constitutive Modeling of Void Shearing Effect in Ductile Fracture of Porous Materials[J]. Engineering Fracture Mechanics, 2008, 75:3343-3366. |
[1] | 刘衡, 汪志能, 宾光富, 林伟明, 林姚辰, 马雁翔. 考虑周向波形特性的航空管路弯曲成形起皱理论建模与临界成形半径分析[J]. 中国机械工程, 2023, 34(16): 1982-1990. |
[2] | 周后明, 陈皓月, 李神贵. 基于梯度结构的Al2O3/ZrO2陶瓷刀具材料的制备及其力学性能[J]. 中国机械工程, 2023, 34(10): 1199-1207. |
[3] | 倪敬, 孙静波, 何利华, 崔智, 薛飞. PTFE材料正交切削切屑成形特性研究[J]. 中国机械工程, 2022, 33(22): 2733-2740. |
[4] | 李伟, 郑颢, 刘彦梅, 范松. 汽车副车架安装螺栓碰撞断裂的数值模拟研究[J]. 中国机械工程, 2022, 33(19): 2388-2393. |
[5] | 殷景飞, 徐九华, 丁文锋, 苏宏华, 曹洋, 何静远. SiCf/SiC陶瓷基复合材料单颗磨粒磨削试验研究[J]. 中国机械工程, 2022, 33(15): 1765-1771. |
[6] | 张明, 智鹏鹏, 霍文彪, 李志永. 地铁车辆轮缘润滑装置吊架断裂机理和试验研究[J]. 中国机械工程, 2022, 33(11): 1369-1376. |
[7] | 郑颢, 欧阳俊, 王玉超, 李伟, 曾子聪, 黄毅, 刘衡. 面向小偏置碰的轮毂断裂模拟研究[J]. 中国机械工程, 2021, 32(13): 1571-1576,1583. |
[8] | 方远方, 张华. 铝合金型材的静轴肩倾斜搅拌摩擦焊接头性能[J]. 中国机械工程, 2021, 32(07): 815-820. |
[9] | 匡松松;熊飞;刘静;贾迎龙;李文炎. 动力蓄电池包挤压失效仿真与实验[J]. 中国机械工程, 2020, 31(04): 498-503. |
[10] | 邓云飞;张永;张伟岐;徐美健;王陆军. 断裂准则对TC4钛合金板抗卵形头弹冲击的影响[J]. 中国机械工程, 2019, 30(19): 2378-2384. |
[11] | 朱达荣1,2;徐德军1,2;刘涛1,2;汪方斌1,2;储朱涛1,2. 金属低周疲劳过程热力学熵特征分析及寿命预测模型[J]. 中国机械工程, 2019, 30(16): 1904-1910. |
[12] | 杨庆华;覃郑永;王志恒;鲍官军. 二维电液颤振对冷挤压成形的影响[J]. 中国机械工程, 2019, 30(05): 621-629. |
[13] | 贾建波1;刘文超1;刘海亮1;鹿超1;徐岩1,2;杨越1;骆俊廷1. 粉末冶金Ti-22Al-25Nb合金的放电等离子烧结工艺数值模拟与实验研究[J]. 中国机械工程, 2018, 29(19): 2377-2383. |
[14] | 李旭波;郑建明;孔令飞;肖世英;刘驰;郭便. 错齿BTA深孔钻削切屑变形断裂影响因素研究[J]. 中国机械工程, 2018, 29(16): 1900-1906. |
[15] | 汪玲玲;何柏岩. 多轴变幅应力状态下连杆微动疲劳全寿命研究[J]. 中国机械工程, 2018, 29(12): 1492-1498. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||