[1]YUAN S J, FAN X B. Developments and Perspectives on the Precision Forming Processes for Ultra-large Size Integrated Components[J]. International Journal of Extreme Manufacturing, 2019,1:022002.
[2]LEYENS C, PETERS M. Titanium and Titanium Alloys[M].Weinheim:Wiley Online Library, 2003.
[3]张喜燕, 赵永庆, 白晨光. 钛合金及应用[M]. 北京:化学工业出版社, 2005.
ZHANG Xiyang, ZHAO Yongqing, Bai Chenguang. Titanium Alloys and Their Applications[M]. Beijing:Chemical Industry Press, 2005.
[4]苑世剑. 精密热加工新技术[M]. 北京:国防工业出版社, 2016.
YUAN Shijian. New Hot Processing Technology[M]. Beijing:National Defense Industry Press, 2016.
[5]WANG K, WANG L, ZHENG K, et al. High-efficiency Forming Processes for Complex Thin-walled Titanium Alloys Components:State-of-the-art and Perspectives[J]. International Journal of Extreme Manufacturing, 2020, 2(3):1-37.
[6]ZHENG K, ZHENG J H, HE Z, et al. Fundamentals, Processes and Equipment for Hot Medium Pressure Forming of Light Material Tubular Components[J]. International Journal of Lightwght Materials and Manufacture, 2019, 3(1):1-19.
[7]GLAVICIC M G, SALEM A A, SEMIATIN S L. X-ray Line-broadening Analysis of Deformation Mechanisms during Rolling of Commercial-purity Titanium[J]. Acta Materialia, 2004, 52(3):647-655.
[8]ROTERS F, EISENLOHR P, HANTCHERLI L, et al. Overview of Constitutive Laws, Kinematics, Homogenization and Multiscale Methods in Crystal Plasticity Finite-element Modeling:Theory, Experiments, Applications[J]. Acta Materialia, 2010, 58(4):1152-1211.
[9]BUSSO E P, MEISSONNIER F T, O'DOWD N P. Gradient-dependent Deformation of Two-phase Single Crystals[J]. Journal of the Mechanics and Physics of Solids, 2000, 48(11):2333-2361.
[10]ZHAO J, LYU L X, LIU G, et al. Analysis of Deformation Inhomogeneity and Slip Mode of TA15 Titanium Alloy Sheets during the Hot Tensile Process Based on Crystal Plasticity Model[J]. Materials Science and Engineering:A, 2017, 707:30-39.
[11]FAN X G, JIANG X Q, ZENG X, et al. Modeling the Anisotropy of Hot Plastic Deformation of Two-phase Titanium Alloys with a Colony Microstructure[J]. International Journal of Plasticity, 2018, 104:173-195.
[12]LI H, Sun X, YANG H. A Three-dimensional Cellular Automata-crystal Plasticity Finite Element Model for Predicting the Multiscale Interaction among Heterogeneous Deformation, DRX Microstructural Evolution and Mechanical Responses in Titanium Alloys[J]. International Journal of Plasticity, 2016, 87:154-180.
[13]WANG X X, ZHAN M, GAO P F, et al. Deformation Mode Dependent Mechanism and Kinetics of Dynamic Recrystallization in Hot Working of Titanium Alloy[J]. Materials Science and Engineering:A, 2020, 772:138804.
[14]ANAHID M, SAMAL M K, GHOSH S. Dwell Fatigue Crack Nucleation Model Based on Crystal Plasticity Finite Element Simulations of Polycrystalline Titanium Alloys[J]. Journal of the Mechanics & Physics of Solids, 2011, 59(10):2157-2176.
[15]LI H W, WU C, YANG H. Crystal Plasticity Modeling of the Dynamic Recrystallization of Two-phase Titanium Alloys during Isothermal Processing[J]. International Journal of Plasticity, 2013, 51:271-291.
[16]ZHAO P, LOW T S E, WANG Y, et al. An Integrated Full-field Model of Concurrent Plastic Deformation and Microstructure Evolution:Application to 3D Simulation of Dynamic Recrystallization in Polycrystalline Copper[J]. International Journal of Plasticity, 2016, 80:38-55.
[17]ZHAO P, WANG Y, NIEZGODA S R. Microstructural and Micromechanical Evolution during Dynamic Recrystallization [J]. International Journal of Plasticity, 2018, 100:52-68.
[18]WU Y, LIU G, WANG K, et al. Loading Path and Microstructure Study of Ti-3Al-2.5V Tubular Components within Hot Gas Forming at 800 ℃ [J]. International Journal of Advanced Manufacturing Technology, 2017, 87(5/8):1823-1833.
[19]SALEM A A, KALIDINDI S R, SEMIATIN S L. Strain Hardening due to Deformation Twinning in α-titanium:Constitutive Relations and Crystal-plasticity Modeling[J]. Acta Materialia, 2005, 53(12):3495-3502.
[20]ZHAO J, LYU L X, WANG K H, et al. Effects of Strain State and Slip Mode on the Texture Evolution of a Near-α TA15 Titanium Alloy during Hot Deformation Based on Crystal Plasticity Method[J]. Journal of Materials Science & Technology, 2020, 38:125-134.
[21]RAABE D, ROTERS F. Using Texture Components in Crystal Plasticity Finite Element Simulations[J]. International Journal of Plasticity, 2004, 20(3):339-361.
[22]李大永, 张少睿, 彭颖红, 等. 板材冲压成形的晶体塑性有限元模拟[J]. 机械工程学报, 2008, 44(1):190-194.
LI Dayong, ZHANG Shaorui, PENG Yinghong, et al. Finite Element Simulation of Sheet Metal Stamping with Polycrystalline Plasticity[J]. Chinese Journal of Mechanical Engineering, 2008, 44(1):190-194.
[23]THOMAS W, OENOKI T, ALTAN T. Process Simulation in Stamping-recent Applications for Product and Process Design[J]. Journal of Materials Processing Technology, 2000, 98(2):232-243.
[24]CHABOCHE J L. A Review of Some Plasticity and Viscoplasticity Constitutive Theories[J]. International Journal of Plasticity, 2008, 24(10):1642-1693.
[25]LIN J, LIU Y, FARRUGIA D. Development of Dislocation-based Unified Material Model for Simulating Microstructure Evolution in Multipass Hot Rolling[J]. Philosophical Magazine, 2005, 85(18):1967-1987.
[26]GARRETT R P, LIN J, DEAN T A. An Investigation of the Effects of Solution Heat Treatment on Mechanical Properties for AA 6xxx Alloys:Experimentation and Modelling[J]. International Journal of Plasticity, 2005, 21(8):1640 -1657.
[27]El F O, WANG L, BALINT D, et al. Numerical Study of the Solution Heat Treatment, Forming and In-die Quenching (HFQ) Process on AA5754[J]. International Journal of Machine Tools and Manufacture, 2014, 87:39-48.
[28]ALABORT E, KONTIS P, BARBA D, et al. On the Mechanisms of Superplasticity in Ti-6Al-4V[J]. Acta Materialia, 2016, 105:449-463.
[29]ALABORT E, PUTMAN D, REED R C. Superplasticity in Ti-6Al-4V:Characterisation, Modelling and Applications[J]. Acta Materialia, 2015, 95:428-442.
[30]FAN X G, YANG H. Internal-state-variable Based Self-consistent Constitutive Modeling for Hot Working of Two-phase Titanium Alloys Coupling Microstructure Evolution[J]. International Journal of Plasticity, 2011, 27(11):1833-1852.
[31]WANG K H, LIU G, ZHAO J, et al. Experimental and Modelling Study of an Approach to Enhance Gas Bulging Formability of TA15 Titanium Alloy Tube Based on Dynamic Recrystallization[J]. Journal of Materials Processing Technology, 2018, 259:387-396.
[32]WU Y, WANG D J, LIU Z Q, et al. A Unified Internal State Variable Material Model for Ti2AlNb-alloy and Its Applications in Hot Gas Forming[J]. International Journal of Mechanical Sciences, 2019, 164:105126.
[33]ANKEM S, MARGOLIN H, GREENE C A, et al. Mechanical Properties of Alloys Consisting of Two Ductile Phases[J]. Progress in Materials Science, 2006, 51(5):632-709.
[34]BAI Q , LIN J, DEAN T A, et al. Modelling of Dominant Softening Mechanisms for Ti-6Al-4V in Steady State Hot Forming Conditions[J]. Materials Science & Engineering A, 2013, 559:352-358.
[35]AVRAMI M. Granulation, Phase Change, and Microstructure Kinetics of Phase Change. Ⅲ[J]. Journal of Chemical Physics, 1941, 9(2):177.
[36]KHALEEL M A, ZBIB H M, NYBERG E A. Constitutive Modeling of Deformation and Damage in Superplastic Materials[J]. International Journal of Plasticity, 2001, 17(3):277-296.
[37]PILLING J. Superplasticity in Crystalline Solids[M]. London:Institute of Metals, 1989.
[38]SEMIATIN S L, SEETHARAMAN V, WEISS I. Flow Behavior and Globularization Kinetics during Hot Working of Ti-6Al-4V with a Colony Alpha Microstructure[J]. Materials Science & Engineering A, 1999, 263(2):257-271.
[39]BABU B, LINDGREN L E. Dislocation Density Based Model for Plastic Deformation and Globularization of Ti-6Al-4V[J]. International Journal of Plasticity, 2013, 50(50):94-108.
[40]STEFANSSON N, SEMIATIN S L. Mechanisms of Globularization of Ti-6Al-4V during Static Heat Treatment[J]. Metallurgical & Materials Transactions A, 2003, 34(3):691-698.
[41]LIU G, WANG K H, HE B B, et al. Mechanism of Saturated Flow Stress during Hot Tensile Deformation of a TA15 Ti Alloy[J]. Materials & Design, 2015, 86(5):146-151.
[42]KHAN A S, SUH Y S, KAZMI R. Quasi-static and Dynamic Loading Responses and Constitutive Modeling of Titanium Alloys[J]. International Journal of Plasticity, 2004, 20(12):2233-2248.
[43]LIU Z Q, WANG X S, JIAO X Y, et al. Prediction of Microstructure Evolution during Hot Gas Forming of Ti2AlNb-based Alloy Tubular Component with Square Cross-section[J]. Procedia Manufacturing, 2018, 15:1156-1163.
[44]LI Z Q, QU H T, CHEN F L, et al. Deformation Behavior and Microstructural Evolution during Hot Stamping of TA15 Sheets:Experimentation and Modelling[J]. Materials, 2019, 12(2):223.
[45]FAN X G, YANG H, GAO P F. Through-process Macro-micro Finite Element Modeling of Localloading Forming of Large-scale Complex Titanium Alloy Component for Microstructure Prediction[J]. Journal of Materials Processing Technology, 2014, 214:253-266.
[46]詹梅, 李宏伟, 孙新新,等. 基于晶体塑性的难变形材料不均匀变形多尺度建模研究进展[J]. 塑性工程学报, 2018, 25(1):1-14.
ZHAN Mei, LI Hongwei, SUN Xinxin, et al. Research Progress of the Multi-scale Modeling of Heterogeneous Deformation for Hard-to-deform Material Based on Crystal Plasticity[J]. Journal of Plasticity Engineering, 2018, 25(1):1-14. |