[1]YANG H G, YILMAZ G, HAN G, et al. A Quick Response and Tribologically Durable Graphene Heater for Rapid Heat Cycle Molding and Its Applications in Injection Molding[J]. Applied Thermal Engineering, 2020, 167:114791.
[2]WU M, ZHANG L, CABRERA E D, et al. Carbide-bonded Graphene Coated Zirconia for Achieving Rapid Thermal Cycling under Low Input Voltage and Power[J]. Ceramics International, 2019, 45(18):24318-24323.
[3]KITAYAMA S, ISHIZUKI R, TAKANO M, et al. Optimization of Mold Temperature Profile and Process Parameters for Weld Line Reduction and Short Cycle Time in Rapid Heat Cycle Molding[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103(5):1735-1744.
[4]ZHANG M L, XIN Y. Molecular Mechanism Research into the Replication Capability of Nanostructures Based on Rapid Heat Cycle Molding[J]. Applied Sciences, 2019, 9(8):1683.
[5]YAO D G, CHEN S C, KIM B H. Rapid Thermal Cycling of Injection Molds:an Overview on Technical Approaches and Applications[J]. Advances in Polymer Technology, 2008, 27(4):233-255.
[6]WANG G L, ZHAO G Q, LI H P, et al. Research of Thermal Response Simulation and Mold Structure Optimization for Rapid Heat Cycle Molding Processes, Respectively, with Steam Heating and Electric Heating[J]. Materials & Design, 2010, 31(1):382-395.
[7]LEE M, KWON Y S, LEE C K. Effect of Warpage on the Operation of a Rapid Cooling and Heating Device[J]. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2019, 41(8):322.
[8]LI Y, GONG N, WANG Y, et al. Advances in Polymer Technology Application of Pareto-based Genetic Algorithm in Determining Layout of Heating Rods for a Plastic Injection Mold[J]. Advances in Polymer Technology, 2020, 2020:7579693.
[9]WANG G L, ZHAO G Q, LI H P, et al. Multi-objective Optimization Design of the Heating/Cooling Channels of the Steam-heating Rapid Thermal Response Mold Using Particle Swarm Optimization[J]. International Journal of Thermal Sciences, 2011, 50(5):790-802.
[10]WANG G L, HUI Y, ZHANG L, et al. Research on Temperature and Pressure Responses in the Rapid Mold Heating and Cooling Method Based on Annular Cooling Channels and Electric Heating[J]. International Journal of Heat and Mass Transfer, 2018, 116:1192-1203.
[11]CREMA L, SORGATO M, LUCCHETTA G. Thermal Optimization of Deterministic Porous Mold Inserts for Rapid Heat Cycle Molding[J]. International Journal of Heat & Mass Transfer, 2017, 109:462-469.
[12]XIAO C L, HUANG H X. Optimal Design of Heating System for Rapid Thermal Cycling Mold Using Particle Swarm Optimization and Finite Element Method[J]. Applied Thermal Engineering, 2014, 64(1/2):462-470.
[13]CERVANTES V F, GOMEZ K A C, SOTO G I P, et al. Optimization of the Heating System by Electrical Resistances in a Rapid Thermal Response Mold Based on MSR-PSO-FEM[J]. Revista Internacional de Metodos Numericos para Calculo y Diseno en Ingenieria, 2019, 35(3):1-20.
[14]KRIA F, HAMMAMI M, BACCAR M. Conformal Heating/Cooling Channels Design in Rapid Heat Cycle Molding Process[J]. Mechanics & Industry, 2017, 18(1):109.
[15]WANG M H, DONG J J, WANG W H, et al. Optimal Design of Medium Channels for Water-assisted Rapid Thermal Cycle Mold Using Multi-objective Evolutionary Algorithm and Multi-attribute Decision-making Method[J]. International Journal of Advanced Manufacturing Technology, 2013, 68(9/12):2407-2417.
[16]LI J Q, LI T D, PENG X, et al. Optimal Design of Heating System for Electrical Rapid Heat Cycle Mold Based on Multi-objective Optimization, Multiple-attribute Decision-making, and Conformal Design Theory[J]. Advances in Mechanical Engineering, 2018, 10(8):168781401878950.
[17]陶文铨. 传热学[M]. 5版. 北京:高等教育出版社, 2019.
TAO Wenquan. Heat Transfer[M]. 5th ed. Beijing:Higher Education Press, 2019.
[18]漆维, 张维刚, 陈立娜, 等. 基于新型梁单元模型的薄壁弯梁耐撞性优化[J]. 中国机械工程, 2014, 25(7):989-993.
QI Wei, ZHANG Weigang, CHEN Lina, et al.Research on Crashworthiness Optimal Design of Thin-walled Curved Beam Based on New Type Beam Element Model[J]. China Mechanical Engineering, 2014, 25(7):989-993.
[19]李博, 夏蕊, 王学文, 等. 基于响应面法的多因素交互作用下中部槽磨损试验研究[J]. 中国机械工程, 2019, 30(22):2764-2771.
LI Bo, XIA Rui, WANG Xuewen, et al. Experimental Study on Wear of Middle Plates under Multi Factor Interactions Based on Response Surface Method[J]. China Mechanical Engineering, 2019, 30(22):2764-2771.
[20]王震虎, 周巧英, 刘开勇, 等. 基于响应面模型的白车身多目标轻量化设计[J]. 中国机械工程, 2018, 29(1):75-81.
WANG Zhenhu, ZHOU Qiaoying, LIU Kaiyong, et al. Multi-object Lightweight Design of BIWs Based on Response Surface Model[J]. China Mechanical Engineering, 2018, 29(1):75-81.
[21]EBERHART R, KENNEDY J. A New Optimizer Using Particle Swarm Theory[C]∥Proceedings of Sixth International Symposium on Micro Machine and Human Science. Nagoya,1995:39-43.
[22]杨超, 李以农, 郑玲, 等. 基于多目标粒子群算法的电磁主动悬架作动器优化[J]. 机械工程学报, 2019, 55(19):154-166.
YANG Chao, LI Yinong, ZHENG Ling,et al. Optimum of Electromagnetic Active Suspension Actuator Using Multi-objective Particle Swarm Optimization Algorithm[J]. Journal of Mechanical Engineering, 2019, 55(19):154-166. |