[1]李恒, 杨合, 宋飞飞, 等. 材料性能波动下TA18钛管绕弯回弹行为[J]. 稀有金属材料与工程, 2014(1):64-71.
LI Heng, YANG He, SONG Feifei, et al.Bending Resilience Behavior of TA18 Titanium Tube under Material Property Fluctuation [J]. Rare Metal Materials and Engineering, 2014(1):64-71.
[2]许旭东, 李光俊. 飞机导管数字化生产线探讨[J]. 航空制造技术, 2005(9):74-76.
XU Xudong, LI Guangjun. Discussion on Digital Production Line of Aircraft Conduit [J]. Aviation Manufacturing Technology, 2005(9):74-76.
[3]韩志仁, 吕彦盈, 刘宝明, 等. 飞机焊接导管数字化制造技术研究[J]. 航空制造技术, 2017, 60(8):95-98.
HAN Zhiren, LYU Yanying, LIU Baoming, et al. Research on Digital Manufacturing Technology of Aircraft Welding Pipe[J]. Aviation Manufacturing Technology, 2017, 60(8):95-98.
[4]詹梅, 杨合, 栗振斌. 管材数控弯曲回弹规律的有限元分析[J]. 材料科学与工艺, 2004(4):14-17.
ZHAN Mei, YANG He, LI Zhenbin. Finite Element Analysis of Springback Law in Numerical Control Bending of Pipes [J]. Materials Science and Technology, 2004 (4):14-17.
[5]宋飞飞, 杨合, 李恒, 等. TA18高强钛管数控弯曲回弹工艺参数影响的显著性分析[J]. 稀有金属材料与工程, 2013, 42(1):43-48.
SONG Feifei, YANG He, LI Heng, et al. Significant Analysis of the Influence of the Technological Parameters of the Numerical Control Bending Rebound of TA18 High Strength Titanium Tube [J]. Rare Metal Materials and Engineering, 2013, 42 (1):43-48.
[6]ZHOU Yingping, LI Pengfei, LI Mingzhe, et al. Residual Stress and Springback Analysis for 304 Stainless Steel Tubes in Flexible-bending Process[J]. International Journal of Advanced Manufacturing Technology, 2018, 94(1):1-9.
[7]YANG He, LI Heng, ZHANG Zhiyong, et al. Advances and Trends on Tube Bending Forming Technologies[J]. Chinese Journal of Aeronautics, 2012, 25(1):1-12.
[8]黄卫东, 陈保国, 张卫红, 等. 民用飞机构件先进成形技术[M]. 上海:上海交通大学出版社, 2016:412-418.
HUANG Weidong, CHEN Baoguo, ZHANG Weihong, et al. Advanced Forming Technology of Civil Aircraft Components[M]. Shanghai:Shanghai Jiao Tong University Press, 2016:412-418.
[9]LI Heng, MA Jun, LIU Biying, et al. An Insight into Neutral Layer Shifting in Tube Bending[J]. International Journal of Machine Tools and Manufacture, 2018, 126:51-70.
[10]ZHAN Mei, WANG Yan, YANG He, et al. An Analytic Model for Tube Bending Springback Considering Different Parameter Variations of Ti-alloy Tubes[J]. Journal of Materials Processing Technology, 2016, 236:123-137.
[11]JEONG H S, HA M Y, CHO J R. Theoretical and FE Analysis for Inconel 625 Fine Tube Bending to Predict Springback[J]. International Journal of Precision Engineering and Manufacturing, 2012, 13:2143-2148.
[12]LI Heng, YANG He, SONG Feifei, et al. Springback Characterization and Behaviors of High-strength Ti-3Al-2.5V Tube in Cold Rotary Draw Bending[J]. Journal of Materials Processing Technology, 2012, 212(9):1973-1987.
[13]MA Jun, YANG He, LI Heng, et al. Springback Prediction of Titanium Tube Bending Considering Bauschinger Effect and Youngs Modulus Variation[J]. Journal of Physics:Conference Series, 2016, 734:032113.
[14]SONG Feifei, YANG He, LI Heng, et al. Springback Prediction of Thick-walled High-strength Titanium Tube Bending[J]. Chinese Journal of Aeronautics, 2013, 26(5):1336-1345.
[15]LIAO Juan, XUE Xin, LEE M G ,et al. On Twist Springback Prediction of Asymmetric Tube in Rotary Draw Bending with Different Constitutive Models[J]. International Journal of Mechanical Sciences, 2014, 89:311-322.
[16]HASSANIN M F, SHOEB A M, HASSANIEN A E. Grey Wolf Optimizer-based Back-propagation Neural Network Algorithm[C]∥ International Computer Engineering Conference. Cairo, 2016:213-218.
[17]刘婧瑶, 唐承统, 宁汝新. 管材数控绕弯回弹实验研究及BP网络预测模型[J]. 塑性工程学报, 2009, 16(6):85-90.
LIU Jingyao, TANG Chengtong, NING Ruxin. Experimental Research and BP Network Prediction Model of Pipe Bending Springback[J]. Journal of Plastic Engineering, 2009, 16 (6):85-90.
[18]INAMDAR M, DATE P P, NARASIMHAN K, et al. Development of an Artificial Neural Network to Predict Springback in Air Vee Bending[J]. International Journal of Advanced Manufacturing Technology, 2000, 16(5):376-381.
[19]王晓莉, 穆瑞, 张咏琴. 基于BP神经网络的薄板成形回弹仿真预测[J]. 锻压技术, 2016, 41(6):146-149.
WANG Xiaoli, MU Rui, ZHANG Yongqin. Springback Simulation Prediction of Sheet Metal Forming Based on BP Neural Network[J]. Forging technology, 2016, 41(6):146-149.
[20]HAN Fei, MO Jianhua, QI Hongwei, et al. Springback Prediction for Incremental Sheet Forming Based on FEM-PSONN Technology[J]. Transactions of Nonferrous Metals Society of China, 2013, 23(4):1061-1071.
[21]LIU Wenjuan, Liu Qiang, RUAN Feng, et al. Springback Prediction for Sheet Metal Forming Based on GA-ANN Technology[J]. Journal of Materials Processing Technology, 2007, 187:227-231.
[22]中国机械工程学会塑性工程学会. 锻压手册:第2卷 冲压[M]. 3版. 北京:机械工业出版社, 2008:296-312.
China Society of Mechanical Engineering, Society of Plastic Engineering. Forging Manual:Volume 2 Stamping [M]. 3rd ed. Beijing:China Machine Press, 2008:296-312.
[23]王博怀. 船用管件数控绕弯回弹及工艺研究[D]. 绵阳:西南科技大学, 2018.
WANG Bohuai. Research on Springback and Technology of Numerical Control Bending of Marine Pipe Fittings[D]. Mianyang:Southwest University of Science and Technology, 2018.
[24]DING Shifei, SU Chunyang, YU Junzhao. An Optimizing BP Neural Network Algorithm Based on Genetic Algorithm[J]. Artificial Intelligence Review, 2011, 36(2):153-162.
[25]BERGH F V D, ENGELBRECHT A P. A Study of Particle Swarm Optimization Particle Trajectories[J]. Information Sciences, 2006, 176(8):937-971.
[26]冯斌, 毛建中, 胡晖. 基于BP神经网络的条带刚凸特征回弹预测[J].锻压技术, 2020, 45(3):20-26.
FENG Bin, MAO Jianzhong, HU Hui. Springback Prediction Based on BP Neural Network for Strip Gigid Convex Characteristics [J]. Forging Technology, 2020, 45 (3):20-26.
[27]LIN Sen, WANG Guanglong, CHEN Yingjie, et al. Warehouse Environment Parameter Monitoring System and Sensor Error Correction Model Based on PSO-BP[J]. Transactions of Nanjing University of Aeronautics and Astronautics, 2017(3):109-116.
[28]BANSAL J C, SINGH P K, SARASWAT M, et al. Inertia Weight Strategies in Particle Swarm Optimization[C]∥ 2011 Third World Congress on Nature and Biologically Inspired Computing. Salamanca, 2011:633-640.
[29]CHEN Yonggang, LI Lixiang, XIAO Jinghua, et al. Particle Swarm Optimizer with Crossover Operation[J]. Engineering Applications of Artificial Intelligence, 2018, 70:159-169. |