[1]武英杰,辛红伟,王建国,等.基于VMD滤波和极值点包络阶次的滚动轴承故障诊断[J].振动与冲击,2018,37(4):102-107.
WU Yingjie,XIN Hongwei,WANG Jianguo,et al. Rolling Bearing Fault Diagnosis Based on the Variational Mode Decomposition Filtering and Extreme Point Envelope Order[J]. Journal of Vibration and Shock,2018,37(4):102-107.
[2]王志坚,吴文轩,马维金,等.基于LMD-MS的滚动轴承微弱故障提取方法[J].振动、测试与诊断,2018,38(5):1014-1020.
WANG Zhijian,WU Wenxuan,MA Weijin,et al.Fault Signal Extraction Method of Rolling Bearing Weak Fault Based on LMD-MS[J].Journal of Vibration, Measurement and Diagnosis,2018,38(5):1014-1020.
[3]赵德尊,李建勇,程卫东,等.基于Vold-Kalman广义解调的变转速轴承和齿轮复合故障诊断[J].振动与冲击,2019,38(6):172-178.
ZHAO Dezun,LI Jianyong,CHENG Weidong,et al. Bearing and Gear Compound Faults Diagnosis Based on the Vold-Kalman Generalized Demodulation under Time-varying Speeds[J].Journal of Vibration and Shock,2019,38(6):172-178.
[4]RANDALL R B,ANTONI J.Rolling Element Bearing Diagnostics—a Tutorial[J]. Mechanical Systems and Signal Processing,2011,25(2):485-520.
[5]宋向金,王卓,胡静涛,等.Hilbert解调制方法诊断异步电机轴承故障[J].电工技术学报,2018,33(21):4941-4948.
SONG Xiangjin,WANG Zhuo,HU Jingtao,et al. Diagnosis of Bearing Fault in Induction Motors Using Hilbert Demodulation Approach[J].Transactions of China Electrotechnical Society,2018,33(21):4941-4948.
[6]蒋永华,李荣强,焦卫东,等.应用EMD和双谱分析的故障特征提取方法[J].振动、测试与诊断,2017,37(2):338-342.
JIANG Yonghua,LI Rongqiang,JIAO Weidong,et al. Feature Extraction Method Based on Empirical Mode Decomposition and Bispectrum Analysis[J].Journal of Vibration, Measurement and Diagnosis,2017,37(2):338-342.
[7]鄢小安,贾民平.基于改进奇异谱分解的形态学解调方法及其在滚动轴承故障诊断中的应用[J].机械工程学报,2017,53(7):104-112.
YAN Xiaoan,JIA Minping.Morphological Demodulation Method Based on Improved Singular Spectrum Decomposition and Its Application in Rolling Bearing Fault Diagnosis[J].Journal of Mechnical Engineering,2017,53(7):104-112.
[8]丁锋,秦峰伟.小波降噪及Hilbert变换在电机轴承故障诊断中的应用[J].电机与控制学报,2017,21(6):89-95.
DING Feng,QIN Fengwei. Application of Wavelet Denoising and Hilbert Transform in Fault Diagnosis of Motor Bearing[J].Electric Machines and Control,2017,21(6):89-95.
[9]王奉涛,邓刚,王洪涛,等.基于EMD和SSAE的滚动轴承故障诊断方法[J].振动工程学报,2019,32(2):368-376.
WANG Fengtao,DENG Gang,WANG Hongtao.A Rolling Bearing Fault Diagnosis Method Based on EMD and SSAE[J].Journal of Vibraion Engineering,2019,32(2):368-376.
[10]张龙,胡俊锋,熊国良.基于MED和SK的滚动轴承循环冲击特征增强[J].振动、测试与诊断,2017,37(1):97-101.
ZHANG Long,HU Junfeng,XIONG Guoliang.Cyclic Shock Enhancement by the Combination of Minimum Entropy Deconvolution and Spectral Kurtosis[J].Journal of Vibration, Measurement and Diagnosis,2017,37(1):97-101.
[11]张云强,张培林,王怀光,等.基于双时域微弱故障特征增强的轴承早期故障智能识别[J].机械工程学报,2016,52(21):96-103.
ZHANG Yunqiang,ZHANG Peilin,WANG Huaiguang, et al. Rolling Bearing Early Fault Intelligence Recognition Based on Weak Fault Feature Enhancement in Time-Time Domain[J]. Journal of Mechnical Engineering,2016,52(21):96-103.
[12]HYVARINEN A.Sparse Code Shrinkage: De-noising of NonGaussian Data by Maximum Likelihood Estimation[J]. Neural Computation,1999,11:1739-176.
[13]王宏超,陈进,董广明.基于最小熵解卷积与稀疏分解的滚动轴承微弱故障特征提取[J].机械工程学报,2013,49(1):88-94.
WANG Hongchao,CHEN Jin,DONG Guangming.Fault Diagnosis Method for Rolling Bearing’s Weak Fault Based on Minimum Entropy Deconvolution and Sparse Decomposition[J].Journal of Mechanical Engineering,2013,49(1):88-94. |