中国机械工程

• 机械基础工程 • 上一篇    下一篇

采用神经网络与模糊控制的制动需求识别

刘晏宇;喻凡;宋娟娟;庞纪苏;KAKU Chuyo   

  1. 1. 上海交通大学机械与动力工程学院,上海,200240
    2. 浙江力邦合信智能制动系统股份有限公司上海分公司,上海,201702
  • 出版日期:2020-12-10 发布日期:2020-12-18
  • 基金资助:
    国家自然科学基金资助项目(51875230)

Detection of Brake Requests Using Neural Network and Fuzzy Control

LIU Yanyu;YU Fan;SONG Juanjuan;PANG Jisu;KAKU Chuyo   

  1. 1. School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240
    2. Shanghai Branch of Zhejiang LBN Intelligent Braking System Co., Ltd, Shanghai, 201702
  • Online:2020-12-10 Published:2020-12-18

摘要: 以保证车辆的制动安全性为最终目的,基于制动推杆行程传感器信号,利用神经网络算法与模糊控制算法提出了对制动需求进行识别的方法。首先采用神经网络算法与模糊控制算法完成对驾驶员制动需求的初步判断,然后通过主缸压力反馈信号对制动系统的制动动作完成程度进行预测,进而对制动需求识别结果进行持续反馈跟踪修正,以保证车辆的制动系统能够实现预期的制动效能。通过MATLAB/Simulink仿真试验与台架试验对控制算法进行了对比与验证,结果表明该方法能迅速准确地识别驾驶员的制动需求,从而为车辆的制动安全性提供保障。

关键词: 安全制动, 神经网络, 模糊控制, 制动力

Abstract: Aiming at ensuring the brake safety of vehicles, approaches for detecting driver brake requests weres investigated by applying neural network and fuzzy control. Firstly, neural network algorithm and fuzzy control algorithm were used to complete preliminary judgment of drivers braking demands. And then, completion degree of braking actions of the braking systems was predicted by feedback signals of the master cylinder pressure. Then the recognition results of braking demands were continuously fed back to track and modify in order to ensure the braking system of vehicles to achieve expected braking efficiency. The control algorithms were compared and validated by MATLAB/Simulink simulation tests and bench tests. The results show that the method may quickly and accurately identify the drivers braking demands and provide guarantee for vehicle braking safety.

Key words: safety braking, neural network, fuzzy control, braking force

中图分类号: