范大鹏;谭若愚
出版日期:
2020-12-25
发布日期:
2020-12-28
基金资助:
FAN Dapeng;TAN Ruoyu
Online:
2020-12-25
Published:
2020-12-28
摘要: 从柔顺传动机构自身运动特点出发,介绍了应用在快速反射镜中较典型的柔性支承传动结构,对国外早期几款比较有特点和现阶段较为先进的快速反射镜从驱动方式、结构布局、支承传动、工作原理等方面进行了介绍和分析。针对目前柔顺传动机构的研究情况,归纳了应用在快速反射镜中柔顺传动单元的设计方法、空间机构构型、刚度分析以及整体动力学分析方法等。最后对快速反射镜中柔顺传动机构的研究和发展方向作出了总结。
中图分类号:
范大鹏;谭若愚. 快速反射镜中柔顺传动机构应用与研究现状[J]. 中国机械工程, DOI: 10.3969/j.issn.1004-132X.2020.24.001.
FAN Dapeng;TAN Ruoyu. Applications and Research Status of Compliant Transmission Mechanisms in Fast-steering Mirrors[J]. China Mechanical Engineering, DOI: 10.3969/j.issn.1004-132X.2020.24.001.
[1]BOULET M T. Design of a Small Fast Steering Mirror for Airborne and Aerospace Applications[D]. Boston:Massachusetts Institute of Technology, 2008. [2]王华,张宪民,邓俊广. 基于压电陶瓷驱动的精密定位平台研究[J]. 测试技术学报, 2007,21(4):295-300. WANG Hua, ZHANG Xianmin, DENG Junguang. Research on a Precision Positioning Stage Based on Piezoelectric Actuators[J]. Journal of Test and Measurement Technology, 2007, 21(4):295-300. [3]田俊,张宪民. 基于柔顺机构的两自由度微动精密定位平台的分析与设计[J]. 机械设计与制造, 2009(5):205-207. TIAN Jun, ZHANG Xianmin. Design and Analysis of a Two Degree of Freedom Micro-positioning Stage[J]. Machiney Design & Manufacture, 2009(5):205-207. [4]吴鹰飞,周兆英. 柔性铰链的计算和分析[J]. 机械设计与研究, 2002, 18(3):29-30. WU Yingfei, ZHOU Zhaoying. Design Calculation and Analysis of Flexure Hinge[J]. Machine Design and Research, 2002, 18(3):29-30. [5]HOLMSTROM S, BARAN U, UREY H. MEMS Laser Scanners:a Review[J]. Journal of Microelectromechanical Systems, 2014,23(2):259-275. [6]王国彪,赖一楠,范大鹏,等. 新型精密传动机构设计与制造综述[J]. 中国机械工程, 2010, 21(16):1891-1897. WANG Guobiao, LAI Yinan, FAN Dapeng, et al. Summary of New Type Precision Transmission Design and Manufacture[J]. China Mechanical Engineering, 2010, 21(16):1891-1897. [7]HENRY T. Automatic Control Data[J]. Systems Engineering, 1962, 17(4):1-6. [8]张波. 盘式绕组旋转式音圈电机的研究[D]. 哈尔滨:哈尔滨工业大学, 2014. ZHANG Bo. Research on Disc Winding Rotary Voice Coil Motor[D]. Harbin:Harbin Institute of Technology, 2014. [9]吴海涛. 大行程柔顺驱动传动单元的机电集成设计[D]. 长沙:国防科技大学, 2015. WU Haitao. Electromechanical Integrated Design of the Large-stroke Comploaint Driving and Transmission Unit[D]. Changsha:National University of Defense Technology, 2015. [10]HENEIN S, SPANOUDAKIS P, DROZ S, et al. Flexure Pivot for Aerospace Mechanisms[C]∥10th European Space Mechanisms and Tribology Symposium. San Sebastian, 2003:285-288. [11]NIELSEN T T. Pointing, Acquisition, and Tracking System for the Free-space Laser Communication System SILEX[J]. Proceedings of SPIE:Free-space Laser Communication Technologies Ⅶ, 1995,2381:10.1117/12.207403. [12]MOHAN S, ALVAREZ-SALAZAR O, BIRNBAUM K, et al. Pointing, Acquisition, and Tracking Architecture Tools for Deep-space Optical Communications[J]. Proceedings of SPIE:Free-space Laser Communication and Atmospheric Propagation,ⅩⅩⅥ,2014,8971:10.1117/12.2042704. [13]邵兵. 激光星间通信终端精瞄微定位系统关键技术的研究[D].哈尔滨:哈尔滨工业大学, 2006. SHAO Bing. Research on Key Technology of Fine Point Micro-Positioning System for Laser Intersatellite Communication Terminal[D]. Harbin:Harbin Institute of Technology, 2006. [14]HO T, MILNER S D, DAVIS C C. Fully Optical Real-time Pointing, Acquisition, and Tracking System for Free Space Optical Link[J]. Proceedings of SPIE, 2005,5712:81-92. [15]于靖军, 郝广波,陈贵敏,等. 柔性机构及其应用研究进展[J]. 机械工程学报, 2015, 51(13):53-68. YU Jingjun, HAO Guangbo, CHEN Guimin, et al. State-of-art of Compliant Mechanisms and Their Applications[J]. Journal of Mechanical Engineering, 2015, 51(13):53-68. [16]张宪民. 柔顺机构拓扑优化设计[J]. 机械工程学报, 2003, 39(11):47-51. ZHANG Xianmin. Topology Optimization of Compliant Mechanisms[J]. Journal of Mechanical Engineering, 2003, 39(11):47-51. [17]于靖军,宗光华,毕树生. 全柔性机构与MEMS[J]. 光学精密工程, 2001(1):1-5. YU Jingjun, ZHONG Guanghua, BI Shusheng. Fully Compliant Mechanisms and MEMS[J].Optics and Precision Engineering, 2001(1):1-5. [18]王雯静,余跃庆,王华伟. 柔顺机构国内外研究现状分析[J]. 机械设计, 2007, 24(6):1-4. WANG Wenjing, YU Yueqing, WANG Huawei. Analysis on the Research Status of Compliant Mechanism at Home and Abroad[J]. Journal of Machine Design, 2007, 24(6):1-4. [19]于靖军,裴旭,毕树生,等. 柔性铰链机构设计方法的研究进展[J]. 机械工程学报, 2010, 46(13):2-13. YU Jingjun, PEI Xu, BI Shusheng, et al. State-of-arts of Design Method for Flexure Mechanisms[J]. Journal of Mechanical Engineering, 2010, 46(13):2-13. [20]李琳,杨勇. 空间曲线切口式柔性铰的设计[J]. 光学精密工程, 2010, 18(10):2192-2198. LI Lin, YANG Yong. Design of Flexure Hinges with Space Curve Notches[J]. Optics and Precision Engineering, 2010, 18(10):2192-2198. [21]赵宏伟,吴博达,曹殿波,等. 直角柔性铰链的力学特性[J]. 纳米技术与精密工程, 2007, 5(2):143-147. ZHAO Hongwei, WU Boda, CAO Dianbo, et al. Mechanical Performance of Right-angle Flexure Hinge[J]. Optics and Precision Engineering, 2007, 5(2):143-147. [22]郭抗,倪明阳,孙振,等. 具有三自由度的减薄直圆型柔性铰链柔度分析[C]∥光学精密工程论坛.长春, 2015:436-442. GUO Kang, NI Mingyang, SUN Zhen, et al. Flexibility Analysis of Thin Straight Circular Flexure Hinges with Three Degrees of Freedom[C]∥Optical and Precision Engineering Conference. Changchun, 2015:436-442. [23]LIU Hua, FAN Shixun, XIE Xin, et al. Design and Modeling of a Novel Monolithic Parallel XY Stage with Centimeters Travel Range[J]. Advances in Mechanical Engineering, 2017, 9(11):1-7. [24]XU Q. Design of a Large-range Compliant Rotary Micropositioning Stage with Angle and Torque Sensing[J]. IEEE Sensors Journal, 2015, 15(4):2419-2430. [25]LAN C, WANG J, FAN C. Optimal Design of Rotary Manipulators Using Shape Memory Alloy Wire Actuated Flexures[J]. Sensors & Actuators A:Physical, 2009, 153(2):258-266. [26]KLUK D J. An Advanced Fast Steering Mirror for Optical Communication[D]. Boston:Massachusetts Institute of Technology, 2007. [27]LONEY G C. Design of a Small-aperture Steering Mirror for High-bandwidth Acquisition and Tracking[J]. Optical Engineering, 1990, 29(11):1360-1365. [28]BERTA A, HEDDING L R, HOFFMAN C, et al. Development of a Commercial Line of High-Performance Fast-steering Mirrors[J]. Proceedings of SPIE,1999,3787:1-12. [29]BRUCE H, PAUL H. Scanning Apparatus and Method That Avoids Unwanted Reactions[EB/OL]. [2020-09-25]. https:∥www.freepatentsonline.com/y2002/0088287.html. [30]姚建涛,李立建,杨维,等. 直圆柔性球铰柔度矩阵的解析计算[J]. 光学精密工程, 2014, 22(7):1857-1863. YAO Jiantao, LI Lijian, YANG Wei, et al. Analytical Calculation of Compliance Matrix for Right-circular Flexure Spherical Hinge[J]. Optics and Precision Engineering, 2014, 22(7):1857-1863. [31]TAPOS F M, EDINGER D J, HILBY T R, et al. High Bandwidth Fast Steering Mirror[J]. Proceedings of SPIE, 2005, 5877:587707. [32]周子云,高云国,邵帅,等. 采用柔性铰链的快速反射镜设计[J]. 光学精密工程, 2014, 22(6):1547-1554. ZHOU Ziyun, GAO Yunguo, SHAO Shuai, et al. Design of Fast Steering Mirror Using Flexible Hinge[J]. Optics and Precision Engineering, 2014, 22(6):1547-1554. [33]ZHU X, XU X, WEN Z, et al. A Novel Flexure-based Vertical Nanopositioning Stage with Large Travel Range[J]. Review of Scientific Instruments, 2015, 86(10):105112. [34]ATEN Q T, JENSEN B D, HOWELL L L. Geometrically Non-linear Analysis of Thin-film Compliant MEMS via Shell and Solid Elements[J]. Finite Elements in Analysis & Design, 2012, 49(1):70-77. [35]HOWELL L L. A Generalized Loop-closure Theory for the Analysis and Synthesis of Compliant Mechanisms[J]. Journal of Mechanical Design, 1993, 118(1):121-125. [36]HOWELL L L. Compliant Mechanisms[J]. Encyclopedia of Nanotechnology, 2001(10):457-463. [37]SAXENA A, KRAMER S N. A Simple and Accurate Method for Determining Large Deflections in Compliant Mechanisms Subjected to End Forces and Moments[J]. Journal of Mechanical Design, 1998, 120(3):392-400. [38]冯忠磊. 柔顺机构的2R伪刚体模型研究[D]. 北京:北京工业大学,2010. FENG Zhonglei. On the 2R Pesudo-rigid-body Model of Compliant Mechanisms[D].Beijing:Beijing University of Technology, 2010. [39]冯忠磊,余跃庆,王雯静. 模拟柔顺机构中柔顺杆件末端特征的2R伪刚体模型[J]. 机械工程学报, 2011, 47(1):36-42. FENG Zhonglei, YU Yueqing, WANG Wenjing. 2R Pseudo-rigid-body Model of Compliant Mechanisms with Compliant Links to Simulate Tip Characteristic[J]. Journal of Mechanical Engineering, 2011, 47(1):36-42. [40]SU Haijun. A Pseudorigid-body 3R Model for Detmining Large Deflection of Cantilever Beams Subject to Tip Loads[J]. Journal of Mechanisms & Robotics, 2009, 1(2):021008. [41]占金青,张宪民. 基于基础结构法的柔顺机构可靠性拓扑优化[J]. 机械工程学报, 2010, 46(13):42-47. ZHAN Jinqing, ZHANG Xianmin. Reliability-based Topology Optimization of Compliant Mechanisms by Using Foundation Structure Approach[J]. Journal of Mechanical Engineering, 2010, 46(13):42-47. [42]BENDSOE M P, KIKUCHI N. Generating Optimal Topologies in Structural Design Using a Homogenization Method[J]. Computer Methods in Applied Mechanics and Engineering, 1988, 71(2):197-224. [43]李庚. 空间大挠度梁的变形计算及其在空间柔顺机构建模中的应用[D]. 西安:西安电子科技大学,2016. LI Geng. Deformation Calculation of Spatial Large Deflection Beams and Its Application in Modeling of Spatial Compliant Mechanisms[D]. Xian:Xidian University, 2016. [44]CULPEPPER M L, ANDERSON G. Design of a Low-cost Nano-manipulator Which Utilizes a Monolithic, Spatial Compliant Mechanism[J]. Precision Engineering, 2004, 28(4):469-482. [45]CHEN S, CULPEPPER M L. Design of a Six-axis Micro-scale Nanopositioner—μHexFlex[J]. Precision Engineering, 2006, 30(3):314-324. [46]CHEN G, ZHANG S. Multistability of Compliant Sarrus Mechanisms[J]. Journal of Mechanisms & Robotics, 2013, 5(2):71-77. [47]HAO G, KONG X, REUBEN R L. A Nonlinear Analysis of Spatial Compliant Parallel Modules:Multi-beam Modules[J]. Mechanism and Machine Theory, 2011, 46(5):680-706. [48]何欢. 大挠度空间梁的静、动力学建模、分析与计算[D]. 南京:南京航空航天大学, 2004. HE Huan. Static and Dynamic Modeling, Analysis and Calculation of Large Deflection Space Beam[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2004. [49]CHIMENTO J R, LUSK C, ALQASIMI A. A 3-D Pseudo-rigid-body Model for Rectangular Cantilever Beams with an Arbitrary Force End-load[C]∥ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference. Buffalo, 2014:DETC2014-34292. [50]CHEN G, MA F. Chained Beam-constraint-model(CBCM):a Powerful Tool for Modeling Large and Complicated Deflections of Flexible Beams in Compliant Mechanisms[C]∥ASME International Design Engineering Technical Conference and Computers and Information in Engineering Conference. Buffalo, 2014:DETC2014-34140. [51]RYAN P J, ADAMS G G, MCGRUER N E. Modeling of a One-sided Bonded and Rigid Constraint Using Beam Theory[J]. Journal of Applied Mechanics, 2008, 75(3):031008. [52]LOBONTIUA N, GARCIAA E. Static Response of Planar Compliant Devices with Small-deformation Flexure Hinges[J]. Mechanics Based Design of Structures & Machines, 2004, 32(4):459-490. [53]宫金良,张彦斐,胡光学,等. 基于单元刚度矩阵法的二维微动平台刚度分析[J]. 机械设计与研究, 2012, 28(4):42-45. GONG Jinliang, ZHANG Yanfei, HU Guangxue, et al. Rigidity Analysis of a Two Dimensional Micro-positioning Platform Based on Unit Stiffness Matrix Method[J]. Machine Design and Research, 2012, 28(4):42-45. [54]SCOTT M L, HOWELL L L. Dynamic Response of Compliant Mechanisms Using the Pseudo-rigid-body Model[C]∥Proceedings of ASME Design Engineering Technical Conference. Sacramento, 1997:DETC97/MECH-7891. [55]余跃庆,徐齐平. 柔顺机构PR伪刚体动力学建模与特性分析[J]. 农业机械学报, 2013, 44(3):225-229. YU Yueqing, XU Qiping. Dynamic Modeling and Characteristic Analysis of Compliant Mechanisms Based on PR Pseudo-rigid-body Model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44(3):225-229. [56]王雯静. 柔顺机构动力学分析与综合[D]. 北京:北京工业大学, 2009. WANG Wenjing. Dynamic Analysis and Synthesis of Compliant Mechanisms[D]. Beijing:Beijing University of Technology, 2009. [57]LI Z, KOTA S. Dynamic Analysis of Compliant Mechanisms[C]∥ Proceedings of ASME 2002 Design Engineering Technical Conferences and Computer and Information in Engineering Conference. Montreal, 2002:DETC2002/MECH-34205. [58]PANZA M J. Mathematical Model for Large Deflection Dynamics of a Compliant Beam Device[J]. Journal of Dynamic Systems Measurement, 2001, 123(2):283-288. |
[1] | 何宇凡, 孙江宏, 高锋, 李乃峥, 何雪萍, 王军见. 一种针对圆锥体外表面贴装的机械手设计分析与优化[J]. 中国机械工程, 2023, 34(01): 55-64. |
[2] | 文桂林, 陈高锡, 王洪鑫 , 薛亮, 魏鹏, 刘杰, . 含自重载荷的功能梯度材料结构时域动力学拓扑优化设计[J]. 中国机械工程, 2022, 33(23): 2774-2782. |
[3] | 赵慧鹏, 周俊杰, 李晋, 范淑瑞, 钱昌贤. 行星离心式新型机械无级传动基本工作特性研究[J]. 中国机械工程, 2021, 32(20): 2427-2435. |
[4] | 郭金生1;王峰1;岳程斐2. 基于商用现货的高分辨卫星微振动抑制系统设计[J]. 中国机械工程, 2020, 31(20): 2395-2042,2411. |
[5] | 吴家腾;杨宇;程军圣. 基于参数反求的齿轮裂纹时变啮合刚度计算方法[J]. 中国机械工程, 2019, 30(24): 2916-2924. |
[6] | 任伟峰;何柏岩;聂锐. 环形桁架天线展开动力学分析[J]. 中国机械工程, 2019, 30(24): 2945-2952. |
[7] | 荣誉1,2,3;刘双勇3;王洪斌1;韩勇3. 轮毂打磨5-DOF机械臂动力学建模与驱动参数预估[J]. 中国机械工程, 2018, 29(04): 449-456. |
[8] | 徐奕柳1;杨龙2,3;杨中原2;肖超2;周玉林2. 新型PURU+RR+S球面并联人形机器人踝关节机构动力学性能分析[J]. 中国机械工程, 2017, 28(16): 1971-1976. |
[9] | 黄康, 段松林, 甄圣超, 徐锐, 薛永昌. 基于系统约束的重型汽车动力学建模及分析[J]. 中国机械工程, 2017, 28(04): 478-486. |
[10] | 李阁强, 王帅, 邓效忠, 周斌. 新型全液压重载锻造机器人机构设计及分析[J]. 中国机械工程, 2016, 27(09): 1168-1175. |
[11] | 李浩, 侍才洪, 康少华, 张西正. 轮履复合救援机器人的乘适性分析与优化[J]. 中国机械工程, 2015, 26(11): 1444-1449. |
[12] | 李海泉, 付丽华, 马北一, 李刚, 于成忠, 宋, 华. 对数螺旋线型面楔块逆止器的设计及动力学分析[J]. 中国机械工程, 2014, 25(21): 2896-2901. |
[13] | 姚廷强, 谢伟, 谭阳. 角接触球轴承保持架柔性多体动力学分析[J]. 中国机械工程, 2014, 25(1): 117-122. |
[14] | 李仕华, 龚文, 李富娟, 姜珊. 新型3-RPC柔性精密平台的刚度与动力学分析[J]. 中国机械工程, 2013, 24(17): 2317-2323. |
[15] | 伍亦文, 卜长根. 深孔钻机离合器接合过程动力学特性分析[J]. 中国机械工程, 2012, 23(12): 1433-1437. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||