[1]许珂敬. 粉体工程学[M]. 东营:中国石油大学出版社, 2010:79-80.
XU Kejing. Powder Engineering[M]. Dongying:China University of Petroleum Press, 2010:79-80.
[2]梁曼, 孙毅, 单继宏, 等. 颤振球磨机中颗粒群粒度特性影响因素试验研究[J]. 机械工程学报, 2018, 54(7):205-215.
LIANG Man, SUN Yi, SHAN Jihong, et al. Experimental Research on the Influence of Features of the Broken Particle Size in a Flutter Ball Mill[J]. Journal of Mechanical Engineering, 2018, 54(7):205-215.
[3]黄化, 秦明礼, 曲选辉, 等. 气流磨处理钨粉的研究[J]. 稀有金属材料与工程, 2012, 41(12):2210-2214.
HUANG Hua, QIN Mingli, QU Xuanhui, et al. Study on Jet Milling Processing of Tungsten Powder[J]. Rare Metal Materials and Engineering, 2012, 41(12):2210-2214.
[4]杨小兰, 刘极峰, 邹景超, 等. 超硬粉体超微粉碎的高振强振动磨技术研究[J]. 中国机械工程, 2009, 20(24):2917-2921.
YANG Xiaolan, LIU Jifeng, ZOU Jingchao, et al. Research on New Techniques of Superfine Grinding for Superhard Powder by High Vibration Intensity[J]. China Mechanical Engineering, 2009,20(24):2917-2921.
[5]KINNARINEN T, TUUNILA R, HUHTANEN M, et al. Wet Grinding of CaCO3 with a Stirred Media Mill:Influence of Obtained Particle Size Distributions on Pressure Filtration Properties[J]. Power Technology, 2015, 273:54-61.
[6]BRUJAN E A, MATSUMOTO Y. Collapse of Micrometer-sized Cavitation Bubbles Near a Rigid Boundary[J]. Microfluidics and Nanofluidics, 2012, 13(6):957-966.
[7]BRUJAN E A,IKEDA T, MATSUMOTO Y. On the Pressure of Cavitation Bubbles[J]. Experimental Thermal & Fluid Science, 2008, 32(5):1188-1191.
[8]陈铁牛, 郭钟宁, 曾柏文, 等. 激光诱导空泡微孔抛光机理及实验研究[J]. 中国机械工程, 2018, 29(3):273-278.
CHEN Tieniu, GUO Zhongning, ZENG Baiwen,et al. Study on Micro-hole Polishing Mechanism and Experiments Based on Laser-induced Cavitation Bubbles[J]. China Mechanical Engineering, 2018, 29(3):273-278.
[9]HSIAO C T, JAYAPRAKASH A, KAPAHI A, et al. Modelling of Material Pitting from Cavitation Bubble Collapse[J]. Journal of Fluid Mechanics, 2014, 755:142-175.
[10]ZHANG L, BELOVA V, WANG H, et al. Controlled Cavitation at Nano/Microparticle Surfaces[J]. Chemistry of Materials, 2014, 26(7):2244-2248.
[11]张玉涛, 李亚清, 洪侯勋, 等. 基于高压水射流的超细煤粉制备技术及其影响因素研究[J]. 中国煤炭, 2014, 40(8):93-96.
ZHANG Yutao, LI Yaqing, HONG Houxun, et al. Production and Effects on Utra-fine Coal Powder Based on High-pressure Waterjet[J]. China Coal, 2014, 40(8):93-96.
[12]宋守许, 查辉, 田光涛, 等. 超高压水射流中空化现象对轮胎破碎作用研究[J]. 中国机械工程, 2015, 26(9):1205-1209.
SONG Shouxu, ZHA Hui, TIAN Guangtao, et al. Cavitation Phenomena on Crushing Effect of Tire under Ultra-high Pressure Water Jet[J]. China Mechanical Engineering, 2015, 26(9):1205-1209.
[13]PLESSET M S, CHAPMAN R B. Collapse of an Initially Spherical Vapour Cavity in the Neighbourhood of a Solid Boundary[J]. Journal of Fluid Mechanics, 1971, 47(2):283-290.
[14]DULAR M, POZAR T, ZEVNIK J, et al. High Speed Observation of Damage Created by a Collapse of a Single Cavitation Bubble[J]. Wear, 2019, 418/419:13-23.
[15]夏冬生, 孙昌国, 刘亚喆, 等. 近固壁微米尺度空泡溃灭的数值研究[J]. 摩擦学学报, 2018, 38(6):711-720.
XIA Dongsheng, SUN Changguo, LIU Yazhe,et al. Numerical Simulation of Micrometer-sized Bubble Collapse Near a Rigid Boundary[J]. Tribology, 2018, 38(6):711-720.
[16]项京成. 液相下空化冲击对微细颗粒的破碎作用研究[D]. 杭州:浙江工业大学, 2018.
XIANG Jingcheng. Resarch on the Breakage of Fine Particles under Cavitaion Impact in Liquid Phase[D]. Hangzhou:Zhejiang University of Technology, 2018.
[17]吕炜. 近壁空化泡溃灭的数值模拟[D]. 杭州:浙江大学, 2015.
LYU Wei. Numerical Simulation of Near Wall Cavitation Bubble Collapse[D]. Hangzhou:Zhejiang University, 2015.
[18]张德荣, 吴思梦, 蒲阳凤. 水力喷砂射孔机理及力学特性分析[J]. 应用力学学报, 2018, 35(5):169-175.
ZHANG Derong, WU Simeng, PU Yangfeng. Analysis of the Mechanism and Mechanical Properties of Hydraulic[J]. Chinese Journal of Applied Mechanics, 2018, 35(5):169-175.
[19]ZHANG H, HAN B, YU X G, et al. Numerical and Experimental Studies of Cavitation Behavior in Water-jet Cavitation Peening Processing[J]. Shock and Vibration, 2013, 20(5):895-905.
[20]SOYAMA H. Enhancing the Aggressive Intensity of a Cavitating Jet by Means of the Nozzle Outlet Geometry[J]. Journal of Fluids Engineering, 2011, 133(10):101301-11.
[21]彭可文, 田守嶒, 李根生, 等. 自振空化射流空泡动力学特征及溃灭强度影响因素[J]. 石油勘探与开发, 2018,45(2):326-332.
PENG Kewen, TIAN Shouceng, LI Gensheng, et al. Bubble Dynamics Characteristics and Influencing Factors on the Cavitation Collapse Intensity for Self-resonating Cavitating Jets[J]. Petroleum Exploration and Development, 2018,45(2):326-332.
[22]FUJISAWA N, FUJITA Y, YANAGISAWA K, et al. Simultaneous Observation of Cavitation Collapse and Shock Wave Formation in Cavitating Jet[J]. Experimental Thermal & Fluid Science, 2018, 94:159-167.
[23]KATUBILWA F M, MOYS M H. Effects of Filling Degree and Viscosity of Slurry on Mill Load Orientation[J]. Minerals Engineering, 2011, 24(13):1502-1512. |