杜飞;王新云;邓磊;夏巨谌;金俊松
出版日期:
2021-03-10
发布日期:
2021-03-17
基金资助:
DU Fei;WANG Xinyun;DENG Lei;XIA Juchen;JIN Junsong
Online:
2021-03-10
Published:
2021-03-17
摘要: 与传统的熔焊工艺不同,高速冲击连接可以有效地减小热影响区和连续金属间化合物的形成,从而保证结合区域的机械性能,并且几乎能够实现任意金属材料间的连接,具有广阔的发展和应用前景。高速冲击连接可以分为驱动飞板高速移动和冲击连接两个过程,主要包括爆炸连接、电磁脉冲连接、激光冲击连接和汽爆连接四种工艺。简要介绍了四种冲击连接过程的基本原理、特点及应用范围,综述了冲击连接过程中的冶金行为、界面现象、力学性能、焊接工艺窗口和数值模拟等方面的最新进展,分析了目前研究中存在的一些问题,为进一步的研究提供了依据和参考。
中图分类号:
杜飞;王新云;邓磊;夏巨谌;金俊松. 高速冲击连接技术的研究进展[J]. 中国机械工程, DOI: 10.3969/j.issn.1004-132X.2021.05.013.
DU Fei;WANG Xinyun;DENG Lei;XIA Juchen;JIN Junsong. Research Progresses of HVIW Technology[J]. China Mechanical Engineering, DOI: 10.3969/j.issn.1004-132X.2021.05.013.
[1]李亚江, 王娟. 异种难焊材料的焊接及工程应用[M]. 北京:化学工业出版社, 2014. LI Yajiang, WANG Juan. Welding and Engineering Application of Dissimilar Materials Difficult to Weld[M]. Beijing:Chemical Industry Press, 2014. [2]NASSIRI A, KINSEY B, CHINI G. Shear Instability of Plastically-deforming Metals in High-velocity Impact Welding[J]. Journal of the Mechanics and Physics of Solids, 2016,95:351-373. [3]ZHANG Y, BABU S S, PROTHE C, et al. Application of High Velocity Impact Welding at Varied Different Length Scales[J]. Journal of Materials Processing Technology, 2011, 211(5):944-952. [4]FINDIK F. Recent Developments in Explosive Welding[J]. Materials & Design, 2011, 32(3):1081-1093. [5]王航, 李晓峰, 张煜. 爆炸焊接层状复合材料国内外发展现况及应用领域简介[J]. 中国钛业, 2017(1):18-21. WANG Hang, LI Xiaofeng, ZHANG Yu. Development and Applications of Explosive Welding Layered Composite Materials at Home and Abroad [J]. China Titanium Industry, 2017(1):18-21. [6]SHANTHALA K , SREENIVASA T N . Review on Electromagnetic Welding of Dissimilar Materials[J]. Frontiers of Mechanical Engineering, 2016, 11(4):363-373. [7]王霄,杨昆,刘会霞,等. 一种飞片驱动式激光微焊接方法及装置:CN101239418[P]. 2008-08-13. WANG Xiao, YANG Kun, LIU Huixia, et al. A Flyer Driven Laser Microwelding Method and Device:CN101239418[P]. 2008-08-13. [8]DAEHN G S, LIPPOLD J C. Low-temperature Spot Impact Welding Driven without Contact:US, WO/2009/111774[P]. 2009-09-11. [9]VIVEK A, HANSEN S R, LIU B C, et al. Vaporizing Foil Actuator:a Tool for Collision Welding[J]. Journal of Materials Processing Technology, 2013, 213(12):2304-2311. [10]JOERN L A, JOERG B, SOEREN G, et al. Influence of the Flyer Kinetics on Magnetic Pulse Welding of Tubes[J]. Journal of Materials Processing Technology, 2018, 262:189-203. [11]WATANABE M, KUMAI S. Interfacial Morphology of Magnetic Pulse Welded Aluminum/Aluminum and Copper/Copper Lap Joints[J].Journal of Japan Institute of Light Metals, 2009, 59(2):140-147. [12]WANG Xiao, GU Yuxuan, QIU Tangbiao, et al. An Experimental and Numerical Study of Laser Impact Spot Welding[J]. Materials and Design, 2015, 65:1143-1152. [13]CHEN Shuhai, HUO Xuchen, GUO Chengxiang, et al. Interfacial Characteristics of Ti/Al Joint by Vaporizing Foil Actuator Welding[J]. Journal of Materials Processing Technology, 2019, 263:73-81. [14]VERSTRAETE J, WAELE W D, FAES K. Magnetic Pulse Welding:Lessons to Be Learned from Explosive Welding[J]. Sustainable Construction & Design, 2011, 2(3):458-464. [15]ZHANG Tingting, WANG Wenxian, ZHANG Wei, et al. Microstructure Evolution and Mechanical Properties of an AA6061/AZ31B Alloy Plate Fabricated by Explosive Welding[J]. Journal of Alloys and Compounds, 2018, 735:1759-1768. [16]郑远谋. 爆炸焊接和爆炸复合材料的原理及应用[M]. 长沙:中南大学出版社, 2007. ZHENG Yuanmou. Principle and Application of Explosive Welding and Explosive Composites [M].Changsha:Central South University Press, 2007. [17]KAPIL A, SHARMA A. Magnetic Pulse Welding:an Efficient and Environmentally Friendly Multi-material Joining Technique[J]. Journal of Cleaner Production, 2015, 100:35-58. [18]KAPIL A, LEE T, VIVEK A, et al. Benchmarking Strength and Fatigue Properties of Spot Impact Welds[J]. Journal of Materials Processing Technology, 2018, 255:219-233. [19]HAHN M, WEDDELING C, TABER G, et al. Vaporizing Foil Actuator Welding as a Competing Technology to Magnetic Pulse Welding[J]. Journal of Materials Processing Technology, 2016, 230:8-20. [20]刘会霞,杨昆,王霄,等. 激光驱动飞片加载金属箔板成形机理研究[J]. 中国机械工程, 2009, 20(7):112-116. LIU Huixia, YANG Kun, WANG Xiao, et al. Research on Mechanism of Metal Foil Forming under Laser Driven Flyer[J]. China Mechanical Engineering, 2009, 20(7):112-116. [21]CROSSLAND B, WILLIAMS J D. Explosive Welding[J]. Metallurgical Reviews, 1970, 15(1):79-100. [22]PHILIPCHUK V. Explosive Welding[J]. Explosive Welding, 1961, 3(1):69-72. [23]VIVEK A, HANSEN S, BENZING J, et al. Impact Welding of Aluminum to Copper and Stainless Steel by Vaporizing Foil Actuator:Effect of Heat Treatment Cycles on Mechanical Properties and Microstructure[J]. Metallurgical and Materials Transactions A, 2015, 46(10):4548-4558. [24]ZHANG Heng, JIAO Kexin, ZHANG Jianliang, et al. Microstructure and Mechanical Properties Investigations of Copper-steel Composite Fabricated by Explosive Welding[J]. Materials Science and Engineering:A, 2018, 731:278-287. [25]CARVALHO G, GALVAO I, MENDES R, et al. Explosive Welding of Aluminium to Stainless Steel[J]. Journal of Materials Processing Technology, 2018, 262:340-349. [26]RAOELISON R N, RACINE D, ZHANG Z, et al. Magnetic Pulse Welding:Interface of Al/Cu Joint and Investigation of Intermetallic Formation Effect on the Weld Features[J]. Journal of Manufacturing Processes, 2014, 16(4):427-434. [27]GOBEL G, KASPAR J, HERMANNSDORFER T, et al. Insights into Intermetallic Phases on Pulse Welded Dissimilar Metal Joints[C]∥Proceedings of Fourth International Conference on High Speed Forming. Columbus, 2010:127-136. [28]ZENG Xiangyu, LI Xiaojie, CHENG Xiang, et al. Numerical and Experimental Studies on the Explosive Welding of Plates with Different Initial Strength[J]. Welding in the World, 2019, 63(4):967-974. [29]NISHIWAKI J, KAMBE T, KEDO Y, et al. Numerical Analysis of Wavy Interface Formation and Successive Temperature Change in Magnetic Pulse Welded Al/Cu Joint[J]. Materials Science Forum, 2016, 877:655-661. [30]MENG Zhenghua, WANG Xu, GUO Wei, et al. Joining Performance and Microstructure of the 2024/7075 Aluminium Alloys Welded Joints by Vaporizing Foil Actuator Welding[J]. Journal of Wuhan University of Technology—Mater. Sci. Ed. 2019, 34(2):368-372. [31]BAHRANI A S, CROSSLAND T J B. The Mechanics of Wave Formation in Explosive Welding[J]. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1967, 296(1445):123-136. [32]EI-SOBKY H, BLAZYNSKI T Z. Experimental Investigation of the Mechanics of Explosive Welding by Means of a Liquid Analogue[C]∥Proceedings of the Fifth International Conference on High Energy Rate Fabrication. Denver, 1975:1-21. [33]COWAN G R, BERGMANN O R, HOLTZMAN A H. Mechanism of Bond Zone Wave Formation in Explosion-clad Metals[J]. Metallurgical and Materials Transactions B, 1971, 2(11):3145-3155. [34]KOWALICK J F, HAY D R. A Mechanism of Explosive Bonding[J]. Metallurgical Transactions, 1971, 2(7):1953-1958. [35]CARTON E. Wave Forming Mechanisms in Explosive Welding[J]. Materials Science Forum, 2004, 465/466:219-224. [36]HUNT J N. Wave Formation in Explosive Welding[J]. The Philosophical Magazine:a Journal of Theoretical Experimental and Applied Physics, 1968, 17(148):669-680. [37]WILSON M P W, BRUNTON J H. Wave Formation between Impacting Liquids in Explosive Welding and Erosion[J]. Nature, 1970, 226(5245):538. [38]高帅. 激光高速冲击焊接异种金属箔板研究[D].镇江:江苏大学,2017. GAO Shuai. Study on Laser High Speed Impact Welding of Dissimilar Metal Foil [D]. Zhenjiang:Jiangsu University, 2017. [39]LEE K J, KUMAI S, ARAI T, et al. Interfacial Microstructure and Strength of Steel/Aluminum Alloy Lap Joint Fabricated by Magnetic Pressure Seam Welding[J]. Materials Science and Engineering:A, 2007, 471(1/2):95-101. [40]UHLMANN E, PRASOL L, ZIEFLE A. Potentials of Pulse Magnetic Forming and Joining[J]. Advanced Materials Research, 2014, 907:349-364. [41]SHRIBMAN V. Magnetic Pulse Welding for Dissimilar and Similar Materials[C]∥Proceedings of Third International Conference on High Speed Forming. Dortmund, 2008:13-22. [42]YU Haiping, XU Zhidan, JIANG Hongwei, et al. Magnetic Pulse Joining of Aluminum Alloy-carbon Steel Tubes[J]. Transactions of Nonferrous Metals Society of China, 2012, 22(S2):s548-s552. [43]刘丽丽,轩福贞. 拉伸载荷下304L/533B爆炸复合板界面损伤的原位观察[J]. 中国机械工程, 2016, 27(23):3235-3240. LIU Lili, XUAN Fuzhen. In situ Observation on Interfacial Damages of 304L/533B Explosive Welded Composite Steel Sheet under Tensile Loading[J]. China Mechanical Engineering, 2016, 27(23):3235-3240. [44]MOUSAVI S A A A, SARTANGI P F. Experimental Investigation of Explosive Welding of CP-Titanium/AISI 304 Stainless Steel[J]. Materials and Design, 2009, 30(3):459-468. [45]WITTMAN R H. The Influence of Collision Parameters on the Strength and Microstructure of an Explosion Welded Aluminum Alloy [C]∥Proceedings of the 2nd International Symposium on the Use of Explosive Energy in Manufacturing Metallic Materials of New Properties. Marianske Lasne, 1973:153-158. [46]WALSH J M, SHREFFLER R G, WILLIG F J. Limiting Conditions for Jet Formation in High Velocity Collisions[J]. Journal of Applied Physics, 1953, 24(3):349-359. [47]WYLIE H K, WILLIAMS P E G, CROSSLAND B. Further Experimental Investigation of Explosive Welding Parameters[C]∥Proceedings of Third International Conference of the Center for High Energy Forming. Denver, 1971:43. [48]ABRAHAMSON G R. Permanent Periodic Surface Deformations due to a Traveling Jet[J]. Journal of Applied Mechanics, 1961, 28(4):519-528. [49]DERIBAS A A, ZAKHARENKO I D . Surface Effects with Oblique Collisions between Metallic Plates[J]. Combustion, Explosion and Shock Waves, 1974, 10(3):358-367. [50]STIVERS S W, WITTMAN R H. Computer Selection of the Optimum Explosive Loading and Weld Geometry[C]∥Proceedings of the Fifth International Conference on High Energy Rate Fabrication. Denver, 1975:1-16. [51]CROSSLAND B, BAHRANI A S. Fundamentals, of Explosive Welding[J]. Contemporary Physics, 1968, 9(1):71-87. [52]RAOELISON R N, BUIRON N, RACHIK M, et al. Study of the Elaboration of a Practical Weldability Window in Magnetic Pulse Welding[J]. Journal of Materials Processing Technology, 2013, 213(8):1348-1354. [53]VIVEK A, LIU B C, HANSEN S R, et al. Accessing Collision Welding Process Window for Titanium/Copper Welds with Vaporizing Foil Actuators and Grooved Targets[J]. Journal of Materials Processing Technology, 2014, 214(8):1583-1589. [54]NASSIRI A, CHINI G, VIVEK A, et al. Arbitrary Lagrangian-Eulerian Finite Element Simulation and Experimental Investigation of Wavy Interfacial Morphology during High Velocity Impact Welding[J]. Materials & Design, 2015, 88:345-358. [55]SAPANATHAN T, RAOELISON R N, PADAYODI E, et al. Depiction of Interfacial Characteristic Changes during Impact Welding Using Computational Methods:Comparison between Arbitrary Lagrangian-Eulerian and Eulerian Simulations[J]. Materials & Design, 2016, 102:303-312. [56]WANG Xiao, ZHENG Yuanyuan, LIU Huixia, et al. Numerical Study of the Mechanism of Explosive/Impact Welding Using Smoothed Particle Hydrodynamics Method[J]. Materials & Design, 2012, 35:210-219. [57]LI X J, MO F, WANG X H, et al. Numerical Study on Mechanism of Explosive Welding[J]. Science and Technology of Welding and Joining, 2012, 17(1):36-41. [58]CHEN S Y, WU Z W, LIU K X, et al. Atomic Diffusion Behavior in Cu-Al Explosive Welding Process[J]. Journal of Applied Physics, 2013, 113(4):044901. |
[1] | 李燕乐, 潘忠涛, 戚小霞, 崔维强, 陈健, 李方义. 热处理工艺对激光熔覆316L温度场与应力场的影响规律[J]. 中国机械工程, 2024, 35(04): 666-677. |
[2] | 彭文飞, 张成, 林龙飞, 黄明辉, 余丰. 基于连续损伤力学的楔横轧芯部损伤建模及预测[J]. 中国机械工程, 2024, 35(04): 711-720,751. |
[3] | 倪敬, 崔智, 何利华, 付新, 朱泽飞. 聚四氟乙烯材料切削工艺和应用研究进展[J]. 中国机械工程, 2024, 35(03): 498-514. |
[4] | 李坤航, 张思琦, 吴玮, 胡明卓, 孙娅铃, 熊鑫, 黄宏. 三层异种不等厚钢电阻点焊多场耦合模拟与分析[J]. 中国机械工程, 2023, 34(24): 2996-3003. |
[5] | 王伟, 马乾伦, 白振华, 王子昂. 基于梯度提升决策树的冷轧高强钢卷力学性能预测[J]. 中国机械工程, 2023, 34(18): 2222-2229. |
[6] | 骆文泽, 成慧梅, 刘红艳, 王义峰, 叶延洪, 邓德安. 高强钢Q960E对接接头残余应力与焊接变形的数值模拟[J]. 中国机械工程, 2023, 34(17): 2095-2105,2141. |
[7] | 刘莹, 陈越, 赵雪利, 于同敏, 祝铁丽, . 超声辅助注射成形碳纤维增强聚丙烯制件性能研究[J]. 中国机械工程, 2023, 34(16): 1975-1981. |
[8] | 李光俊, 段宏, 徐磊, 阚琛, 刘忠亮, 高晓东. Al7.8Co20.6Cr12.2Fe11.5Ni40.7Ti7.2高熵超合金的摩擦磨损行为研究[J]. 中国机械工程, 2023, 34(13): 1568-1575. |
[9] | 周后明, 陈皓月, 李神贵. 基于梯度结构的Al2O3/ZrO2陶瓷刀具材料的制备及其力学性能[J]. 中国机械工程, 2023, 34(10): 1199-1207. |
[10] | 高恺, 李坤, 顾红历, . 镀锌量对低合金钢/5052铝合金感应静压焊接头微观组织与力学性能的影响[J]. 中国机械工程, 2023, 34(10): 1220-1229. |
[11] | 朱玉龙, 赵迎松, 方阳, 陈洪恩, 陈振茂, . 孔边裂纹的旋转涡流检测[J]. 中国机械工程, 2023, 34(08): 883-891. |
[12] | 杨硕, 张杰, 孔宁, 王浩威, 王晓宇, 庄原. 航天用大展收比豆荚结构变形规律模型及其仿真验证[J]. 中国机械工程, 2023, 34(07): 780-788. |
[13] | 张岩, 黄传真, 刘含莲. 氮化碳基陶瓷刀具材料的制备与力学性能研究[J]. 中国机械工程, 2023, 34(03): 352-358,368. |
[14] | 方学伟, 蒋笑, 王喆, 武晓康, 黄科. ER120S-G高强钢电弧增材制造的工艺优化[J]. 中国机械工程, 2023, 34(02): 218-225. |
[15] | 蒋创宇, 张保强, 陈云, 王存福, 罗华耿, 胡杰翔, 曹龙超. Gyroid结构力学性能及数值收敛性研究[J]. 中国机械工程, 2022, 33(23): 2790-28000. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||