中国机械工程 ›› 2021, Vol. 32 ›› Issue (07): 820-831.DOI: 10.3969/j.issn.1004-132X.2021.07.009
李方义1;戚小霞1;李燕乐1;王黎明1;杜际雨1;许京伟2;孟晓宁2
出版日期:
2021-04-10
发布日期:
2021-04-16
通讯作者:
李燕乐(通信作者),男,1989年生,副教授。研究方向为汽车零部件再制造、增材制造。E-mail:yanle.li@sdu.edu.cn。
作者简介:
李方义,男,1969年生,教授、博士研究生导师。研究方向为再制造理论方法和技术、产品全生命周期评价。发表论文120余篇。E-mail:lifangyi@sdu.edu.cn。
LI Fangyi1;QI Xiaoxia1;LI Yanle1;WANG Liming1;DU Jiyu1;XU Jingwei2;MENG Xiaoning2#br#
Online:
2021-04-10
Published:
2021-04-16
摘要: 阐述了我国盾构机再制造的发展现状并指出了我国盾构机再制造发展的不足与挑战,综述了盾构机主轴承、刀具刀盘、液压系统、减速机、螺旋输送机等关键部件的损伤形式及目前常用的再制造修复方法。分析了激光熔覆、热喷涂、冷喷涂、冷焊等增材修复技术在盾构机再制造方面的潜能和优势,最后展望了盾构机再制造的发展趋势。
中图分类号:
李方义, 戚小霞, 李燕乐, 王黎明, 杜际雨, 许京伟, 孟晓宁. 盾构机关键零部件再制造修复技术综述[J]. 中国机械工程, 2021, 32(07): 820-831.
LI Fangyi, QI Xiaoxia, LI Yanle, WANG Liming, DU Jiyu, XU Jingwei, MENG Xiaoning. Review on Repair Technologies for Key Part Remanufacturing of Shield Machines[J]. China Mechanical Engineering, 2021, 32(07): 820-831.
[1]徐滨士, 张伟. 面向21世纪的绿色再制造[J]. 中国表面工程, 1999(4):1-4. XU Binshi, ZHANG Wei. Green Remanufacturing for the 21st Century[J]. China Surface Engineering, 1999(4):1-4. [2]李恩重, 史佩京, 徐滨士,等. 我国再制造政策法规分析与思考[J]. 机械工程学报, 2015, 51(19):117-123. LI Enzhong, SHI Peijing, XU Binshi, et al. Analysis of Policies and Regulations of China Remanufacturing[J]. Journal of Mechanical Engineering, 2015, 51(19):117-123. [3]徐滨士, 夏丹, 谭君洋,等. 中国智能再制造的现状与发展[J]. 中国表面工程, 2018, 31(5):1-13. XU Binshi, XIA Dan, TAN Junyang, et al. Status and Development of Intelligent Remanufacturing in China[J]. China Surface Engineering, 2018, 31(5):1-13. [4]张佳兴. 盾构机主驱动密封跑道再制造[J]. 机电工程技术, 2018, 47(9):170-173. ZHANG Jiaxing. Remanufacturing of the Main Driving Seal Runway of the Shield Machine[J]. Mechanical & Electrical Engineering Technology, 2018, 47(9):170-173. [5]马龙飞. 盾构机再制造实践与分析[J].建筑机械化,2020,41(5):67-70. MA Longfei. Practice and Analysis of Shield Machine Remanufacturing[J]. Construction Mechanization, 2020,41(5):67-70. [6]乔治. 盾构再制造研究与实施[J]. 中国设备工程, 2019(15):145-147. QIAO Zhi. Research and Implementation of Shield Remanufacture[J]. China Plant Engineering, 2019(15):145-147. [7]易新乾. 盾构/工程机械再制造推进中14个问题探讨[J]. 隧道建设, 2018, 38(7):1079-1086. YI Xinqian. Discussion on 14 Issues in Remanufacturing Process of Shield/Construction Machinery[J]. Tunnel Construction, 2018, 38(7):1079-1086. [8]李桐. 盾构机再制造工程[J]. 金属加工(冷加工), 2014(17):13-14. LI Tong. Shield Machine Remanufacturing Engineering[J]. Metal Working(Metal Cutting), 2014(17):13-14. [9]ZHANG Chunguang, QU Fuzheng, LI Guo, et al. Influence of Cutterhead System Structure on Load Distribution and Life of Main Bearing[J]. Journal of Vibroengineering, 2016, 18(7):4164-4177. [10]刘宏志. TBM主轴承大齿圈洞内修复方案及工艺流程[J]. 科技资讯, 2017, 15(6):112. LIU Hongzhi. TBM Main Bearing Big Tooth Ring Hole Repair Plan and Process Flow[J]. Science & Technology Information, 2017, 15(6):112. [11]陆豪杰. 盾构主轴承再制造技术应用[J]. 建筑机械化, 2017, 38(3):58-62. LU Haojie. Application of Remanufacturing Technology for Main Bearing of Shield Machine[J]. Construction Mechanization, 2017, 38(3):58-62. [12]张友功,吴伟才.盾构机主轴承检测与再制造分析[J].设备管理与维修,2019(23):43-46. ZHANG Yougong, WU Weicai. Detection and Remanufacture Analysis of Shield Machine Main Bearing[J]. Plant Maintenance Engineering, 2019(23):43-46. [13]乔路卫. 盾构机主轴承再制造案例分析[J]. 机电工程技术, 2019, 48(9):235-236. QIAO Luwei. Case Analysis of Remanufacturing of Main Bearing of Shield Machine[J]. Mechanical & Electrical Engineering Technology, 2019, 48(9):235-236. [14]李胜新. 盾构掘进中主轴承密封的修复方法[J]. 石油工程建设, 2007(5):65-66. LI Shengxin. Repair Method of Main Bearing Seal in Shield Tunneling[J]. Petroleum Engineering Construction, 2007(5):65-66. [15]缪楠. 土压平衡盾构主驱动密封滑道磨损处理[J]. 隧道建设, 2013, 33(11):977-981. MIAO Nan. Treatment Measures for Wearing of Main Drive Sealing Slide of EPB Shield[J]. Tunnel Construction, 2013, 33(11):977-981. [16]REN D J, SHEN S L, ARULRAJAH A, et al. Prediction Model of TBM Disc Cutter Wear during Tunnelling in Heterogeneous Ground[J]. Rock Mechanics and Rock Engineering, 2018,51:3599-3611. [17]蒋建敏, 赵学彬, 贺定勇,等. 北京地区盾构机刀具失效分析及再制造研究[J]. 中国表面工程, 2006,19(3):44-46. JIANG Jianmin, ZHAO Xuebin, HE Dingyong, et al. Failure Analysis and Reproducing of Shield Machines Cutter in Beijing Region[J].China Surface Engineering, 2006,19(3):44-46. [18]段保亮, 马怀祥. 盾构机典型刀具再制造中的关键技术研究[J]. 表面工程与再制造, 2019, 19(增刊1):27-33. DUAN Baoliang, MA Huaixiang. Research on Key Technologies in Typical Tool Remanufacturing of Shield Machine[J]. Surface Engineering & Remanufacturing, 2019, 19(S1):27-33. [19]刘卓. 盾构机刀盘再制造工艺流程及要点[J]. 工程机械与维修, 2019(3):100-101. LIU Zhuo. Process Flow and Key Points of Remanufacturing Cutter Head of Shield Machine[J]. Engineering Machinery & Maintenance, 2019(3):100-101. [20]李爱农, 杨翔, 李蓓,等. 盾构刀盘拆卸结构再制造设计及数值模拟[J]. 焊接技术, 2018, 47(9):143-148. LI Ainong, YANG Xiang, LI Bei, et al. Remanufacturing Design and Numerical Simulation of Shield Cutter Disassembly Structure[J]. Welding Technology, 2008, 47(9):143-148. [21]毛三华. 土压平衡盾构机单刃滚刀修复工艺[J]. 工程机械与维修, 2012(6):130-132. MAO Sanhua. Repair Technology of Single Edge Hob of Earth Pressure Balanced Shield Machine[J].Construction Machinery & Maintenance, 2012(6):130-132. [22]刘建琴, 贾玄彬, 郭伟, 等. 基于裂纹萌生的TBM刀盘地质匹配及失效研究[J]. 天津大学学报(自然科学与工程技术版), 2017, 50(11):1148-1153. LIU Jianqin, JIA Xuanbin, GUO Wei, et al. Research on TBM Cutter-head Geological Matching and Failure Based on Crack Initiation[J]. Journal of Tianjin University(Science and Technology), 2017, 50(11):1148-1153. [23]孙伟, 朱晔, 凌静秀, 等. 基于裂纹失效区域的分体式刀盘可靠性计算[J]. 东北大学学报(自然科学版), 2016, 37(8):1144-1148. SUN Wei, ZHU Ye, LING Jingxiu, et al. Split Cutter Head Reliability Calculation Based on Crack Failure Regions[J]. Journal of Northeastern University(Natural Science), 2016, 37(8):1144-1148. [24]TIAN Jiyu, HU Yong, ZHAO Hongwei, et al. The Indentation and Wear Performance of Hardfacing Layers on H13 Steel for Use in High Temperature Application[J]. AIP Advances, 2019,9:095304. [25]周奇才, 黄克, 赵炯,等. 基于改进型滑动窗主元分析的盾构液压系统故障诊断研究[J]. 中国机械工程, 2013, 24(5):638-643. ZHOU Qicai, HUANG Ke, ZHAO Jiong, et al. Research on Fault Diagnosis of Hydraulic System for Shield Machine Based on Improved Moving Windows Algorithm Principal Component Analysis[J]. China Mechanical Engineering, 2013, 24(5):638-643. [26]王红霞, 王盛, 刘强. 基于Kriging响应面法的盾构机行星架多目标优化[J]. 机械传动, 2014, 38(3):71-75. WANG Hongxia, WANG Sheng, LIU Qiang.Multi-objective Optimization for Planetary Carrier of Shield Machine Based on Kriging Response Surface Method[J]. Journal of Mechanical Transmission, 2014,38(3):71-75. [27]刘学, 赵海鸣. 盾构螺旋输送机的螺旋轴疲劳断裂问题研究[J]. 机械工程师, 2019(9):40-41. LIU Xue, ZHAO Haiming. Fatigue Crack Research on Spiral Shaft of Screw Conveyer in Shield Machine[J]. Mechanical Engineer, 2019(9):40-41. [28]LIU Xuanyu, ZHANG Kaiju. Earth Pressure Balance Control of Shield Tunneling Machine Based on Nonlinear Least Squares Support Vector Machine Model Predictive Control[J]. Measurement & Control, 2019, 52(1/2):3-10. [29]司丹, 林宋, 彭兴礼,等. 盾构机驱动外壳密封位特种修复技术对裂纹的控制研究[J]. 机械设计与制造, 2011(12):140-142. SI Dan, LIN Song, PENG Xingli, et al. Study on Crack Control of Special Repairing Technology for the Sealing of Shield Machine Driving Jacket[J]. Mechanical Design & Manufacturing, 2011(12):140-142. [30]朱胜, 周超极, 周克兵. 绿色增材再制造技术[J]. 中国机械工程, 2018, 29(21):2590-2593. ZHU Sheng, ZHOU Chaoji, ZHOU Kebing. Green Additive Remanufacturing Technology[J]. China Mechanical Engineering, 2008, 29(21):2590-2593. [31]李方义, 李振, 王黎明,等. 内燃机增材再制造修复技术综述[J]. 中国机械工程, 2019, 30(9):1119-1127. LI Fangyi, LI Zhen, WANG Liming, et al. Review on ICE Remanufacturing with Additive Repair Technology[J]. China Mechanical Engineering, 2019,30(9):1119-1127. [32]张坚, 邱斌, 赵龙志. 激光熔覆技术研究进展[J]. 热加工工艺, 2011, 40(8):116-119. ZHANG Jian, QIU Bin, ZHAO Longzhi. Latest Developments of Laser Cladding Technology[J]. Hot Working Technology, 2011, 40(8):116-119. [33]段松. 盾构机滚刀刀圈材料激光熔覆镍基硬质合金的研究[D]. 石家庄:石家庄铁道大学,2016. DUAN Song. Study of Nickel Based Carbide Coatings on Cutter Ring Material for TBM Hob by Laser Cladding[D]. Shijiazhuang:Shijiazhuang Tiedao University, 2016. [34]付琴. 激光熔覆高耐蚀耐磨纳米晶涂层的制备与性能研究[D]. 武汉:华中科技大学, 2015. FU Qin. Study on Properties of Nanocrystalline Coatings by Laser Cladding[D]. Wuhan:Huazhong University of Science and Technology, 2015. [35]ZESIG J,SCHDLICH N, GIEBELER L, et al. Microstructure and Abrasive Wear Behavior of a Novel FeCrMoVC Laser Cladding Alloy for High-performance Tool Steels[J]. Wear, 2017, 382/383:107-112. [36]SHI J, BAI S Q. Research on Gear Repairing Technology by Laser Cladding[J]. Key Engineering Materials, 2013,546:40-44. [37]ZHU L, WANG S H, PAN H C, et al. Research on Remanufacturing Strategy for 45 Steel Gear Using H13 Steel Powder Based on Laser Cladding Technology[J]. Journal of Manufacturing Processes, 2020, 49:344-354. [38]肖洁, 丁涛. 基于激光熔覆的采煤机高速轴耐蚀性能研究[J]. 激光杂志, 2020, 41(4):130-135. XIAO Jie, DING Tao. Study on High Speed Shaft Corrosion Resistance of Axle Based on Laser Cladding[J]. Laser Journal, 2020,41(4):130-135. [39]封慧,李剑峰,孙杰.曲轴轴颈损伤表面的激光熔覆再制造修复[J].中国激光,2014,41(8):86-91. FENG Hui, LI Jianfeng, SUN Jie. Study on Remanufacturing Repair of Damaged Crank Shaft Journal Surface by Laser Cladding[J]. Chinese Journal of Lasers,2014,41(8):86-91. [40]王义猛. 液压油缸活柱表面激光熔覆技术研究[J]. 热加工工艺, 2018, 47(18):137-140. WANG Yimeng. Study on Laser Cladding Technology on Surface of Hydraulic Cylinder Movable Column[J]. Hot Working Technology, 2018, 47(18):137-140. [41]CUI Zeqin, ZHEN Qin, PENG Dong, et al. Microstructure and Corrosion Properties of FeCoNiCrMn High Entropy Alloy Coatings Prepared by High Speed Laser Cladding and Ultrasonic Surface Mechanical Rolling Treatment[J]. Materials Letters, 2020, 259:126769. [42]郭卫,李凯凯,柴蓉霞,等. 27SiMn钢表面激光熔覆铁基合金组织和耐磨性分析[J].应用激光, 2018,38(3):351-357. GUO Wei, LI Kaikai, CHAI Rongxia, et al. Analysis of Microstructure and Wear Resistance of Fe-based Alloy on 27SiMn Steel Surface by Laser Cladding[J]. Applied Laser, 2018,38(3):351-357. [43]翟建华,刘志杰,张勇,等.内缸活塞杆的激光熔覆修复[J].激光与光电子学进展,2017,54(11):273-280. ZHAI Jianhua, LIU Zhijie,ZHANG Yong, et al. Laser Cladding Reparation of Inner Cylinder Piston Rods[J]. Laser & Optoelectronics Progress, 2017,54(11):273-280. [44]GALEDARI S A, MAHDAVI A, AZARMI F, et al. A Comprehensive Review of Corrosion Resistance of Thermally-sprayed and Thermally-diffused Protective Coatings on Steel Structures[J]. Journal of Thermal Spray Technology,2019, 28:645-677. [45]马宁. 高硬强韧WC涂层的设计及其在工程机械再制造中的应用[D]. 天津:天津大学,2014. MA Ning. Design of WC Coating with High Hardness, Strength and Toughness and Its Application in Remanufacturing of Construction Machinery[D].Tianjin:Tianjin University, 2014. [46]曹华军, 童少飞, 陈海峰,等. 基于热喷涂的轴类零件再制造工艺及其残余应力分析[J]. 中国机械工程, 2014, 25(24):3368-3372. CAO Huajun, TONG Shaofei, CHEN Haifeng, et al. Analysis of Remanufacturing Process and Residual Stress of Axis Parts Based on Thermal Spraying[J]. China Mechanical Engineering, 2014, 25(24):3368-3372. [47]郭永明. 表面工程应用实例 [例53] 电弧喷涂在煤矿液压支架立柱修复中的应用[J].中国表面工程, 2018, 31(2):2. GUO Yongming. Application Examples of Surface Engineering [Example 53] Application of Arc Spraying in Repairing Hydraulic Support Column in Coal Mine[J]. China Surface Engineering, 2018, 31(2):2. [48]张景河, 王群, 邓帮华,等. 超音速火焰喷涂WC-Cr3C2-M涂层性能及其在液压支架立柱上的应用研究[J]. 热喷涂技术, 2018, 10(3):27-32. ZHANG Jinghe, WANG Qun, DENG Banghua, et al. Properties and Application on the Hydraulic Support Plunger of WC-Cr3C2-M Coating Deposited by High Velocity Oxygen Fuel Spray Process[J]. Thermal Spray Technology, 2018, 10(3):27-32. [49]刘麟, 顾伯勤. 高温球阀喷涂Al2O3-TiO2和WC-Co涂层的耐磨粒磨损性能[J]. 南京工业大学学报(自然科学版), 2009, 31(5):5-8. LIU Lin, GU Boqin. Abrasive Resistance of Sprayed Al2O3-TiO2 and WC-Co Coatings on High Temperature Ball Valve[J]. Journal of Nanjing University of Technology(Natural Science Edition), 2009, 31(5):5-8. [50]赖允有, 邱联昌,杨凤根,等. 用于高压阀门新型WC-10Co-4Cr 涂层的研究[C]∥第十四届国际热喷涂研讨会.武汉, 2011:65-71. LAI Yunyou,QIU Lianchang, YANG Fenggen, et al. Study of New WC-10Co-4Cr Coatings Used for High Pressure Valve[C]∥14th International Symposium on Thermal Spraying (ITSS).Wuhan, 2011:65-71. [51]LU Haiyang, SHANG Jiantong, JIA Xiujie, et al. Erosion and Corrosion Behavior of Shrouded Plasma Sprayed Cr3C2-NiCr Coating[J]. Surface & Coatings Technology, 2020,388:125534. [52]LI Zhen, LI Yanle, LI Jianfeng, et al. Effect of NiCr Content on the Solid Particle Erosion Behavior of NiCr-Cr3C2 Coatings Deposited by Atmospheric Plasma Spraying[J]. Surface & Coatings Technology, 2020, 381:125144. [53]DU Jiyu, LI Fangyi, LI Yanle, et al. Influences of Plasma Arc Remelting on Microstructure and Service Performance of Cr3C2-NiCr/NiCrAl Composite Coating[J]. Surface & Coatings Technology, 2019,369:16-30. [54]邓楠, 董浩, 车洪艳,等. 冷喷涂制备金属涂层及其在增材制造应用中的研究进展[J].表面技术, 2020, 49(3):57-66. DENG Nan, DONG Hao, CHE Hongyan, et al. The Research Progress on Preparation of Metal Coatings by Cold Spraying and Its Application in Additive Manufacturing[J]. Surface Technology, 2020,49(3):57-66. [55]YIN S, CAVALIERE P, ALDWELL B, et al. Cold Spray Additive Manufacturing and Repair:Fundamentals and Applications[J].Additive Manufacturing, 2018, 21:628-650. [56]STOLTENHOFF T, ZIMMERMANN F, SURFACE P, et al. Coatings for Aluminum Aerospace Components Exposed to High Dynamic Stresses[R]. Ratingen:Praxair Surface Technologies GmbH, 2012. [57]WIDENER C A, CARTER M J, OZDEMIR O C, et al. Application of High-pressure Cold Spray for an Internal Bore Repair of a Navy Valve Actuator[J].Journal of Thermal Spray Technology, 2015, 25(1/2):193-201. [58]王璐璐. 基于轴类部件磨损修复的冷喷涂涂层制备及性能研究[D].厦门:集美大学,2015. WANG Lulu. Preparation and Study on Cold Spraying Coating Based on Shaft Parts Repair[D].Xiamen:Jimei University, 2015. [59]丁紫阳,马宗彬,黎文强.冷焊技术在液压支架修复再制造的应用研究[J].煤矿机械,2017,38(3):127-128. DING Ziyang, MA Zongbin, LI Wenqiang. Application of Cold Welding Technology in Remanufacturing of Hydraulic Support[J]. Coal Mine Machinery, 2017,38(3):127-128. [60]徐庆钟, 李方义, 秦顺顺,等. 冷焊工艺参数对HT250表面修复层性能的影响[J]. 机械工程学报, 2013, 49(7):101-105. XU Qingzhong, LI Fangyi, QIN Shunshun, et al. Effect of Cold-welding Parameters on Properties of HT250 Surface Repaired Layer[J]. Journal of Mechanical Engineering, 2013, 49(7):101-105. |
[1] | 李燕乐, 潘忠涛, 戚小霞, 崔维强, 陈健, 李方义. 热处理工艺对激光熔覆316L温度场与应力场的影响规律[J]. 中国机械工程, 2024, 35(04): 666-677. |
[2] | 黄云, 黄建超, 肖贵坚, 刘帅, 林瓯川, 刘振扬. 超疏水表面加工技术及耐磨性能研究进展[J]. 中国机械工程, 2024, 35(01): 2-26. |
[3] | 刘尧, 陈改革, 刘振国, 孔宪光, 常建涛. 关联规则挖掘驱动的盾构机刀盘健康评估方法[J]. 中国机械工程, 2023, 34(11): 1326-1334,1342. |
[4] | 舒林森, 巩江涛, 董月, 苏成明, 王昕. 阀芯零件激光再制造工艺方法及试验研究[J]. 中国机械工程, 2023, 34(04): 446-453. |
[5] | 周嘉利, 程延海, 陈永雄, 梁秀兵, 白成杰, 杜望. 激光熔覆工艺参数对铁基双层涂层组织和残余应力的影响[J]. 中国机械工程, 2022, 33(12): 1418-1426,1434. |
[6] | 许明三, 周春辉, 张正, 曾寿金, . 激光熔覆过程中的粉、气、光耦合温度场[J]. 中国机械工程, 2022, 33(01): 70-77. |
[7] | 姜德政, 胡军, 钟恒, 王洪光, 宋屹峰, 袁兵兵, . 一种滚动密封爬壁机器人的安全吸附条件与运动特性分析[J]. 中国机械工程, 2021, 32(22): 2757-2764. |
[8] | 柯庆镝, 姜丰, 张鹏, 田常俊, 秦小州. 基于修复涂层力学性能影响规律的再制造毛坯表面污染物状态评估[J]. 中国机械工程, 2021, 32(19): 2340-2347,2356. |
[9] | 李云峰, 石岩, . 脉冲频率对激光熔覆层微观组织与性能的影响[J]. 中国机械工程, 2021, 32(17): 2108-2117,2124. |
[10] | 王涛, 朱磊, 唐杰, 王浩, 吴军. 双送粉激光熔覆CoCrAlSiY/YSZ梯度涂层微观组织及热振性能[J]. 中国机械工程, 2021, 32(15): 1854-1860. |
[11] | 郭辰光, 吕宁, 郭昊, 李强, 岳海涛, . 毛坯基体形态对再制造同轴送粉粉流场影响规律分析#br#[J]. 中国机械工程, 2021, 32(09): 1091-1101. |
[12] | 宋守许;郁炯. 考虑疲劳损伤的支撑辊主动再制造时机决策方法[J]. 中国机械工程, 2021, 32(05): 565-571. |
[13] | 宋守许1,2;胡孟成1,2;杜毅1,2;罗润东1,2. 混合定子铁心再制造电机应变数值仿真与转矩不平衡分析[J]. 中国机械工程, 2020, 31(09): 1080-1088. |
[14] | 杜彦斌1;曹华军2. 基于监测诊断的在役机床个性化再设计技术体系[J]. 中国机械工程, 2020, 31(05): 567-575. |
[15] | 付宇明, 赵华洋, 郑丽娟, 齐童. 多元陶瓷相在激光熔覆层中的溶解机制研究[J]. 中国机械工程, 2019, 30(23): 2884-2889,2897. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||