中国机械工程 ›› 2021, Vol. 32 ›› Issue (08): 908-915,937.DOI: 10.3969/j.issn.1004-132X.2021.08.004

• 机械基础工程 • 上一篇    下一篇

垂直型多级位移放大机构设计与力学解析建模

林超;沈忠磊;李坪洋;郑山   

  1. 重庆大学机械传动国家重点实验室,重庆,400044
  • 出版日期:2021-04-25 发布日期:2021-05-10
  • 作者简介:林超,男,1958年生,教授、博士研究生导师。研究方向为微/纳传动、精密传动理论和方法。E-mail:linchao@cqu.edu.cn。
  • 基金资助:
    国家自然科学基金(51675060)

Design and Mechanics Analytical Modeling of Vertical Multistage Displacement Amplification Mechanisms

LIN Chao;SHEN Zhonglei;LI Pingyang;ZHENG Shan   

  1. State Key Laboratory of Mechanical Transmission,Chongqing University,Chongqing,400044
  • Online:2021-04-25 Published:2021-05-10

摘要: 针对压电位移放大机构在垂直方向较难实现大行程、高频带宽度的问题,结合两个复合菱形机构、两个杠杆机构以及一个普通菱形机构,提出了一种垂直型多级位移放大机构。基于能量守恒方法和弹性梁理论建立了位移放大比和输入/输出刚度解析模型,根据拉格朗日方程推导了固有频率解析模型。通过有限元法对解析模型进行了验证,所建立的位移放大比解析模型有较高的预测精度,可为大行程垂直型柔顺平台的优化设计提供参考。与文献中的位移放大机构性能对比结果表明,提出的垂直型位移放大机构具有更好的静动态平衡性能,其位移放大比可达43.29,同时保持一个较高的固有频率561.28 Hz。

关键词: 压电驱动器, 位移放大机构, 柔性铰链, 力学解析, 垂直运动

Abstract:  Piezoelectric displacement amplification mechanisms were difficult to obtain large working strokes and high frequency bandwidth in vertical direction. Therefore, a new vertical multistage displacement amplification mechanism was proposed by integrating two compound rhombus-type mechanisms, two lever mechanisms and a rhombus-type mechanism. Analytical models of displacement amplification ratio and input/output stiffness were deduced by energy conservation method and elastic beam theory. The analytical model of natural frequency was derived based on Lagrange equation. The analytical model was verified by finite element method. The analytical model of displacement amplification ratio herein has a high prediction accuracy and may provide a reference for optimal design of vertical compliant stage with a large working stroke. After compared with several vertical displacement amplification mechanisms from references, the proposed vertical multistage displacement mechanism shows better static and dynamic performances, with a displacement amplification ratio of 43.29 and a relative high natural frequency of 561.28 Hz.

Key words: piezoelectric actuator, displacement amplification mechanism, flexure hinge, mechanics analysis, vertical motion

中图分类号: