[1]KARPUSCHEWSKI B, KNOCHE H J, HIPKE M,et a1. High Performance Gear Hobbing with Powder-metallurgical High Speed-steel[J]. Procedia CIRP, 2012, 1:196-201.
[2]STARK S, BEUTNER M, LORENZ F,et a1. Heat flux and Temperature Distribution in Gear Hobbing Operations[J]. Procedia CIRP, 2013, 8:456-461.
[3]陈鹏, 曹华军, 张应, 等. 齿轮高速干式滚切工艺参数优化模型及应用系统开发[J]. 机械工程学报, 2017, 53(1):190-197.
CHEN Peng, CAO Huajun, ZHANG Ying,et a1. The Process Parameters Optimization Model of Gear High-speed Dry Hobbing and Its Application System Development[J].Journal of Mechanical Engineering, 2017, 53(1):190-197.
[4]KANE M M, IVANOV B V, ZAGORSKAYA N B. Optimizing the Hobbing of Cylindrical Gears[J]. Russian Engineering Research, 2014, 34(8):526-529.
[5]KARPUSCHEWSKI B, BEUTNER M, KCHIG M, et al. Cemented Carbide Tools in High Speedgear Hobbing Applications[J]. CIRP Annals, 2017, 66(1):117-120.
[6]YANG X, CAO H, LI B, et al. A Thermal Energy Balance Optimization Model of Cutting Space Enabling Environmentally Benign Dry Hobbing[J]. Journal of Cleaner Production, 2017, 172:2323-2335.
[7]SANTANNA D R, MUNDIM R B, BORILLE A V, et al. Experimental Approach for Analysis of Vibration Sources in a Gear Hobbing Machining Process[J]. Journal of the Brazilian Society of Mechanical Sciences & Engineering, 2015, 38(3):1-9.
[8]SUN S, WANG S, WANG Y,et al. Prediction and Optimization of Hobbing Gear Geometric Deviations[J]. Mechanism & Machine Theory, 2018, 120:288-301.
[9]CAI W, LIU F, HU S. An Analytical Investigation on Energy Efficiency of High-speed Dry-cutting CNC Hobbing Machines[J].International Journal of Sustainable Engineering, 2018, 11(6):412-419.
[10]CAO W D, YAN C P, WU D J, et al. A Novel Multi-objective Optimization Approach of Machining Parameters with Small Sample Problem in Gear Hobbing[J]. International Journal of Advanced Manufacturing Technology, 2017, 93:1-12.
[11]LIU X, ZHAO F, MEI X. A Fuzzy Adaptive Controller for Constant Cutting Torque in High-performance Gear Hobbing Process[C]∥IEEE International Conference on Advanced Intelligent Mechatronics. Munich, 2017:1725-1730.
[12]钟健, 阎春平, 曹卫东, 等. 基于 BP 神经网络和 FPA 的高速干切滚齿低碳优化决策[J].工程设计学报, 2017, 24(4):449-458.
ZHONG Jian, YAN Chunping, CAO Weidong, et al. Low Carbon Optimization Decision for High-speed Dry Hobbing Process Parameters Based on BP Neural Networks and FPA[J]. Chinese Journal of Engineering Design, 2017, 24(4):449-458.
[13]李聪波, 崔龙国, 刘飞, 等. 面向高效低碳的数控加工参数多目标优化模型[J]. 机械工程学报, 2013, 49(9):87-96.
LI Congbo, CUI Longguo, LIU Fei, et al. Multi-objective NC Machining Parameters Optimization Model for High Efficiency and Low Carbon[J].Journal of Mechanical Engineering, 2013, 49(9):87-96.
[14]SUDHAGAR S, SAKTHIVEL M, MATHEW P J, et al. A Multi Criteria Decision Making Approach for Process Improvement in Friction Stir Welding of Aluminum Alloy[J]. Measurement, 2017, 108:1-8.
[15]YAN W,ZHANG H,JIANG Z G, et al. Multi-objective Optimization of Arc Welding Parameters:the Trade-offs between Energy and Thermal Efficiency[J]. Journal of Cleaner Production, 2017, 140:1842-1849.
[16]SHAO Q, XU T, YOSHINO T,et al. Multi-objective Optimization of Gas Metal Arc Welding Parameters and Sequences for Low-carbon Steel(Q345D) T-joints[J]. Journal of Iron and Steel Research, International, 2017, 24(5):544-555.
|