[1]田硕, 尚建勤, 盖鹏涛,等. 带筋整体壁板预应力喷丸成形数值模拟及变形预测[J]. 航空学报, 2019, 40(10):279-291.
TIAN Shuo, SHANG Jianqin, GAI Pengtao, et al. Numerical Simulation and Deformation Prediction of Prestressed Shot Peening for Integral Wall with Reinforcement[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10):279-291.
[2]LI Wei, ZHENG Anzhong, YOU Lihua, et al. Rib-reinforced Shell Structure[J]. Computer Graphics Forum, 2017, 36(7):15-27.
[3]季学荣, 丁晓红. 板壳结构加强筋优化设计方法[J]. 机械强度, 2012, 34(5):692-698.
JI Xuerong, DING Xiaohong. Optimization Design Method of Reinforcement for Plate and Shell Structure[J]. Mechanical Strength, 2012, 34(5):692-698.
[4]ZHAO Haiming, XU Weiwei, ZHOU Kun, et al. Stress-Constrained Thickness Optimization for Shell Object Fabrication[J]. Computer Graphics Forum, 2016, 18(4):23-27.
[5]LIU Yang, SHIMODA M. Parameter-free Optimum Design Method of Stiffeners on Thin-walled Structures[J]. Structural and Multidisciplinary Optimization, 2014, 31(5):39-47.
[6]周克民,胡云昌. 利用有限元构造Michell桁架的一种方法[J]. 力学学报, 2002,23(6):935-940.
ZHOU Kemin, HU Yunchang. A Method to Construct Michell Truss by Finite Element Method[J]. Chinese Journal of Mechanics, 2002,23(6):935-940.
[7]WANG Weiming, WANG Tuanfeng, YANG Zhouwang, et al. Cost-effective Printing of 3d Objects with Skin-frame Structures[J]. ACM Transactions on Graphics, 2013, 32(5):1-10.
[8]ZHANG Heng, DING Xiaohong, DONG Xiaohu, et al. Optimal Topology Design of Internal Stiffeners for Machine Pedestal Structures Using Biological Branching Phenomena[J]. Structural & Multidisciplinary Optimization, 2018, 57(6):2323-2338.
[9]LI Baotong, LIU Honglei, YANG Zihui, et al. Stiffness Design of Plate/Shell Structures by Evolutionary Topology Optimization[J]. Thin Walled Structures, 2019, 141:232-250.
[10]LI Yongqiang. Deformable Geometry Design with Controlled Mechanical Property Based on 3D Printing[J]. Dissertations & Theses Grad Works, 2014, 13(5):17-20.
[11]KWOK T H, LI Yongqiang, CHEN Yong. A Structural Topology Design Method Based on Principal Stress Line[J]. Computer-aided Design, 2016, 80(3):19-31.
[12]WU Jun, AAGE N, WESTREMAN R, et al. Infill Optimization for Additive Manufacturing-Approaching Bone-like Porous Structures[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 32(1):87-123.
[13]TAM K M M, MUELLER C T. Additive Manufacturing along Principal Stress Lines[J]. 3d Printing & Additive Manufacturing, 2017, 4(2):63-81.
[14]DAYNES S, FEIH S, LU Wenfeng, et al. Optimization of Functionally Graded Lattice Structures Using Isostatic Lines[J]. Materials & Design, 2017, 127:215-223.
[15]GIL-URETA F, PIETRONI N, ZORIN D. Structurally Optimized Shell[J]. AU Gil-Ureta, 2019, 12(17):13-25.
[16]马建峰, 陈五一, 赵岭,等. 基于蜻蜓膜翅结构的飞机加强框的仿生设计[J]. 航空学报, 2009,19(3):562-569.
MA Jianfeng, CHEN Wuyi, ZHAO Ling, et al. BionicDesign of Aircraft Reinforcement Frame Based on Dragonfly Membrane Wing Structure[J]. Acta Aeronautica et Astronautica Sinica, 2009, 19(3):184-191.
[17]TAM K M M, MUELLER C. Stress Line Generation for Structurally Performative Architectural Design[J]. Conference of the Association for Computer Aided Design in Architecture, 2015,12(01):234-241.
[18]XIE Liming, YANG Zhongping, JIN Lan, et al. Bionic Design Research on High Specific Stiffness Efficiency of Column for Milling Composite Machining Center[J]. Modular Machine Tool and Automatic Machining Technology, 2017, 9(1):138-140.
[19]李宇鹏,巴春来,刘来超. 采用结构仿生的重型机床立柱的综合优化[J]. 中国机械工程, 2019, 30(13):1621-1625.
LI Yupeng, BA Chunlai, LIU Laichao. Comprehensive Optimization of Columns for Heavy Machine Tools Using Structural Bionics[J]. China Mechanical Engineering, 2019, 30(13):1621-1625.
[20]FAN Hualin, FANG Daining, CHEN Liming, et al. Manufacturing and Testing of a CFRC Sandwich Cylinder with Kagome Cores[J]. Composites Science and Technology, 2009, 69(15/16):2695-2700.
|