[1]王国彪, 陈殿生, 陈科位, 等. 仿生机器人研究现状与发展趋势[J]. 机械工程学报, 2015, 51(13):27-44.
WANG Guobiao, CHEN Diansheng, CHEN Kewei, et al. The Current Research Status and Development Strategy on Biomimetic Robot[J]. Journal of Mechanical Engineering, 2015, 51(13):27-44.
[2]葛文杰, 沈允文, 杨方. 仿袋鼠柔性跳跃机器人的驱动力特性研究[J]. 中国机械工程, 2006,27(8):857-861.
GE Wenjie, SHEN Yunwen, YANG Fang. Research on the Driving Characteristics of Bionic Kangaroo-hopping Robot[J]. China Mechanical Engineering, 2006,27(8):857-861.
[3]魏敦文, 葛文杰, 高涛. 仿生灵感下的弹性驱动器的研究综述[J]. 机器人, 2017, 39(4):541-550.
WEI Dunwen, GE Wenjie, GAO Tao. Review of Elastic Actuator Research from Bionic Inspiration[J]. Robot, 2017, 39(4):541-550.
[4]PRATT G A, WILLIAMSON M M. Series Elastic Actuators[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Pittsburgh, 1995:399-406.
[5]ROBINSON D W, PRATT J E, PALUSKA D J, et al. Series Elastic Actuator Development for a Biomimetic Walking Robot[C]∥IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Piscataway, 1999:561-568.
[6]ROBINSON D. Design and Analysis of Series Elasticity in Closed-loop Actuator Force Control[D]. Boston:Massachusetts Institute of Technology, 2000.
[7]PRATT J E, KRUPP B T. Series Elastic Actuators for Legged Robots[J]. Proceedings of SPIE: the International Society for Optical Engineering, 2004, 29(3):234-241.
[8]HUTTER M, REMY C D, SIEGWART R. Adaptive Control Strategies for Open-loop Dynamic Hopping[C]∥IEEE International Conference on Intelligent Robots and Systems. Louis, 2009:154-159.
[9]HUTTER M, REMY C D, HOEPFLINGER M, et al. Efficient and Versatile Locomotion with Highly Compliant Legs[J]. IEEE Transactions on Mechatronics, 2013, 18(2):449-458.
[10]马洪文, 王立权, 赵朋, 等. 串联弹性驱动器力驱动力学模型和稳定性分析[J]. 哈尔滨工程大学学报, 2012, 33(11):1410-1416.
MA Hongwen, WANG Liquan, ZHAO Peng, et al. Research ofDynamic Model and Stability of a Series Elastic Actuator[J]. Journal of Harbin Engineering University, 2012, 33(11):1410-1416.
[11]马洪文, 赵朋, 王立权, 等. 刚度和等效质量对SEA能量放大特性的影响[J]. 机器人, 2012, 34(3):275-281.
MA Hongwen, ZHAO Peng, WANG Liquan, et al. Effect of Stiffiness and Equivalent Mass on Energy Amplification Characteristics of SEA[J]. Robot, 2012, 34(3):275-281.
[12]CHEN G, QI P, GUO Z, et al. Mechanical Design and Evaluation of a Compact Portable Knee-Ankle-Foot Robot for Gait Rehabilitation[J]. Mechanism and Machine Theory, 2016, 103:51-64.
[13]HALDANE D W, PLECNIK M M, YIM J K, et al. Robotic Vertical Jumping Agility via Series-elastic Power Modulation[J]. Science Robotics, 2016, 1(1):eaag 2048.
[14]PLECNIK M M, HALDANE D W, YIM J K, et al. Design Exploration and Kinematic Tuning of a Power Modulating Jumping Monopod[J]. Journal of Mechanisms and Robotics, 2017, 9(1):011009.
[15]HALDANE D W, YIM J K, FEARING R S. Repetitive Extreme-acceleration (14-g) Spatial Jumping with Salto-1P[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Vancouver, 2017:3345-3351.
[16]YIM J K, FEARING R S. Precision Jumping Limits from Flight-phase Control in Salto-1P[C]∥IEEE/RSJ International Conference on Intelligent Robots and Systems. Madrid, 2018:2229-2236.
[17]吴伟男, 朱秋国, 吴俊, 等. 基于粒子群优化算法的单腿机器人膝踝协调运动控制[J]. 机械工程学报, 2017, 53(15):93-100.
WU Weinan, ZHU Qiuguo, WU Jun, et al. Coordinated Motion Control between the Knee and Ankle Joints for One-legged Robot Based on Particle Swarm Optimization Algorithm[J]. Journal of Mechanical Engineering, 2017, 53(15):93-100.
[18]朱坚民, 黄春燕, 雷静桃, 等.气动肌腱驱动的拮抗式仿生关节位置/刚度控制[J]. 机械工程学报, 2017, 53(13):64-74.
ZHU Jianmin, HUANG Chunyan, LEI Jingtao, et al. Position/Stiffness Control of Antagonistic Bionic Joint Driven by Pneumatic Muscles Actuators[J]. Journal of Mechanical Engineering, 2017, 53(13):64-74.
[19]UGURLU B, FORNI P, DOPPMANN C, et al. Torque and Variable Stiffness Control for Antagonistically Driven Pneumatic Muscle Actuators via a Stable Force Feedback Controller[C]∥IEEE/RSJ International Conference on Intelligent Robots & Systems. Hamburg, 2015:1633-1639.
[20]UGURLU B, FORNI P, DOPPMANN C, et al. Stable Control of Force, Position, and Stiffness for Robot Joints Powered via Pneumatic Muscles[J]. IEEE Transactions on Industrial Informatics, 2019, 15:6270-6279.
[21]张道辉,赵新刚,韩建达, 等. 气动人工肌肉拮抗关节的力与刚度独立控制[J]. 机器人,2018,40(5):587-596.
ZHANG Daohui, ZHAO Xingang, HAN Jianda, et al. Independent Force and Stiffness Control for Antagonistic Joint Driven by Pneumatic Artificial Muscles[J]. Robot, 2018, 40(5):587-596.
[22]CHOU C P, HANNAFORD B. Measurement and Modeling of Mckibben Pneumatic Artificial Muscle[J]. IEEE Transaction on Robotics and Automation, 1996, 12(1):90-102.
[23]ZHANG Daohui, ZHAO Xingang, HAN Jianda. Active Model-based Control for Pneumatic Artificial Muscle[J]. IEEE Transactions on Industrial Electronics, 2017, 64(2):1686-1695.
[24]刘金琨. 先进PID控制及其MATLAB仿真[M]. 北京:电子工业出版社, 2016:317-327.
LIU Jinkun. Advanced PID Control and MATLAB Simulation[M]. Beijing:Electronic Industry Press, 2016:317-327.
[25]CHEN Ziheng, LEI Jingtao, Cheng Liya, et al. Hopping Planning of the Bionic Leg Mechanism Driven by PAMs with Biarticular Muscle[J]. High Technology Letters, 2019, 25(4):408-416.
|