[1]JIN Guobao, WANG Minjie, ZHAO Danyang, et al. Design and Experiments of Extrusion Die for Polypropylene Five-lumen Micro Tube[J]. Journal of Materials Processing Technology,2014,214(1):50-59.
[2]TIAN Huiqing, ZHAO Danyang, WANG Minjie, et al. Effect of Die Lip Geometry on Polymer Extrudate Deformation in Complex Small Profile Extrusion[J]. Journal of Manufacturing Science and Engineering, 2017,139(6):061005.
[3]MITSOULIS E, LUGER H J, MIETHLINGER J, et al. Flow Behavior of a Polypropylene Melt in Capillary Dies[J]. International Polymer Processing, 2018, 33(5):642-651.
[4]MU Yue, ZHAO Guoqun, CHEN Anbiao, et al. Modeling and Simulation of Three-dimensional Extrusion Swelling of Viscoelastic Fluids with PTT, Giesekus and FENE-P Constitutive Models[J]. International Journal for Numerical Methods in Fluids, 2013,72(8):846-863.
[5]MCLEISH T C B, LARSON R G. Molecular Constitutive Equations for a Class of Branched Polymers:The Pom-Pom Polymer[J]. Journal of Rheology, 1998, 42(1):81-110.
[6]TANNER R I. On the Congruence of Some Network and Pom-Pom Models[J]. Korea-Australia Rheology Journal, 2006,18(1):9-14.
[7]VERBEETEN W M H, PETERS G M, BAAIJENS F P T. Viscoelastic Analysis of Complex Polymer Melt Flows Using the Extended Pom-Pom Model[J]. Journal of Non-Newtonian Fluid Mechanics, 2002, 108:301-326.
[8]CLEMEUR N, DEBBAUT B. A Pragmatic Approach for Deriving Constitutive Equations Endowed with Pom-Pom Attributes[J]. Rheologica Acta,2007,46:1187-1196.
[9]WANG Xiaolin, CHEN Ruhuang, WANG Mengmeng, et al. Validation of Double Convected Pom-Pom Model with Particle Image Velocimetry Technique[J]. Polymer Engineering & Science, 2015,55(8):1897-1905.
[10]WANG Wei, WANG Xuanping, HU Changxu. A Comparative Study of Viscoelastic Planar Contraction Flow for Polymer Melts Using Molecular Constitutive Models[J]. Korea-Australia Rheology Journal. 2014, 26(4):365-375.
[11]LU Yong, JIANG Kaiyu, WANG Minjie. Study on Rheological Properties of In-mold Co-injection Self-reinforced Polymer Melt[J]. Polymer Testing, 2021,93:1-14.
[12]徐斌, 王敏杰, 于同敏, 等. 微尺度效应下的聚合物熔体粘度理论及试验[J]. 机械工程学报,2010,46(19):125-132.
XU Bin, WANG Minjie, YU Tongmin, et al. Theoretical and Experimental Approach of the Viscosity of Polymer Melt under Micro-scale Effect[J]. Journal of Mechanical Engineering, 2010, 46(19):125-132.
[13]王敏杰,田慧卿,赵丹阳. 聚合物熔体微尺度剪切黏度测量方法与黏度模型[J]. 机械工程学报, 2012, 48(16):21-29.
WANG Minjie, TIAN Huiqing, ZHAO Danyang. Micro-scale Shear Viscosity Testing Approach and Viscosity Model of Polymer Melts[J]. Journal of Mechanical Engineering, 2012, 48(16):21-29.
[14]LPEZ-LPEZ M T, RODRGUEZ-ARCO L, ZUBAREV A, et al. Effect of Gap Thickness on the Viscoelasticity of Magnetorheological Fluids[J]. Journal of Applied Physics, 2010,108(8):083503.
[15]刘奎,王敏杰,赵丹阳,等. 聚合物熔体动态黏弹特性微尺度效应实验研究[J]. 化工学报, 2020, 71(增刊1):90-97.
LIU Kui, WANG Minjie, ZHAO Danyang, et al. Experimental Research on Micro-scale Effect for Dynamic Viscoelastic Properties of Polymer Melt[J]. Journal of Chemical Industry and Engineering, 2020, 71(S1):90-97.
[16]TANG Dahang, MARCHESINI F H, DHOOGE D R, et al. Isothermal Flow of Neat Polypropylene through a Slit Die and Its Die Swell:Bridging Experiments and 3D Numerical Simulations[J]. Journal of Non-Newtonian Fluid Mechanics, 2019, 266:33-45.[17]沈新元. 高分子材料加工原理[M]. 3版. 北京:中国纺织出版社,2014.
SHEN Xinyuan. Principles of Polymer Material Processing[M]. 3rd Ed. Beijing:China Textile & Apparel Press, 2014.
|