[1]任艳艳,张国赏,魏世忠,等.我国堆焊技术的发展及展望[J]. 焊接技术,2012,41(6):1-4.
REN Yanyan, ZHANG Guoshang, WEI Shizhong, et al. Development and Prospects of Surfacing Technology in My Country[J]. Welding Technology, 2012, 41(6):1-4.
[2]LANG Yuping, QU Huapeng, CHEN Haitao, et al. Research Progress and Development Tendency of Nitrogen-alloyed Austenitic Stainless Steels[J]. Journal of Iron and Steel Research, 2015,22(2):91-98.
[3]王力锋,刘凤德,刘双宇,等.高氮钢复合焊接接头组织与力学性能研究[J].中国机械工程,2016,27(24):3382-3388.
WANG Lifeng, LIU Fengde, LIU Shuangyu, et al. Study on Welded Joint Microstructure and Mechanics Properties of High Nitrogen Steels for Laser-arc Hybrid Welding[J]. China Mechanical Engineering, 2016, 27(24):3382-3388.
[4]何实,李家宇,赵昆.我国堆焊技术发展历程回顾与展望[J].金属加工,2009,60(22):32-34.
HE Shi, LI Jiayu, ZHAO Kun. Review andProspect of the Development Process of Surfacing Technology in My Country[J]. Metal Processing, 2009, 60(22):32-34.
[5]闻章鲁,周琦,余进.高氮钢电弧增材制造工艺及组织性能研究[J].热加工工艺, 2017(23):235-238.
WEN Zhanglu, ZHOU Qi, YU Jin. Research on Arc Additive Manufacturing Process and Microstructure and Properties of High Nitrogen Steel[J]. Hot Working Technology, 2017(23):235-238.
[6]叶约翰,周琦,秦伟铭,等.高氮钢-不锈钢电弧增材制造表面形貌研究[J]. 机械制造与自动化, 2019, 48(3):42-45.
YE Yuehan, Zhou Qi, QIN Weiming, et al. Study of Surface Morphology of High Nitrogen Steel-stainless Steel Arc Additive[J]. Machine Building & Automation, 2019, 48(3):42-45.
[7]赵耀邦,成群林,徐爱杰,等. 激光-电弧复合焊接技术的研究进展及应用现状[J]. 航天制造技术, 2014, 8(4):11-14.
ZHAO Yaobang, CHENG Qunlin, XU Aijie, et al. Research Progress and Application Status of Laser-arc Hybrid Welding Technology[J]. Aerospace Manufacturing Technology, 2014, 8(4):11-14.
[8]刘黎明,陈亮,宋刚. 高强钢低功率脉冲激光诱导熔化极活性气体保护电弧仰焊成形[J]. 中国机械工程, 2020, 31(17):2137-2141.
LIU Liming, CHEN Liang, SONG Gang. Weld Formation of High Strength Steels by Low-power Pulsed Laser Induced Mental Active Gas Hybrid Welding in Overhead Positions[J]. China Mechanical Engineering, 2020,31(17):2137-2141.
[9]孙硕,刘双宇,贾冬生,等. 高氮钢激光-电弧复合焊焊缝成形多元非线性回归模型[J]. 机械工程学报, 2015, 51(8):67-75.
SUN Shuo, LIU Shuangyu, JIA Dongsheng, et al. Multivariate Nonlinear Regression Model for Weld Formation of High Nitrogen Steel Laser-arc Hybrid Welding[J]. Journal of Mechanical Engineering, 2015, 51(8):67-75.
[10]刘丽霞,乔岩欣. pH值对高氮钢在NaCl溶液中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2014, 26(2):132-136.
LIU Lixia, QIAO Yanxin. Effect of pH Value on Electrochemical Behavior of High Nitrogen Stainless Steel in NaCl Solution[J]. Corrosion Science and Protection Technology, 2014, 26(2):132-136.
[11]MORI G, BAUERNFEIND D. Pitting and Crevice Corrosion of Superaustenitic Stainless Steels[J]. Materials & Corrosion, 2015, 55(3):164-173.
[12]OLEFJORD I, WEGRELIUS L. The Influence of Nitrogen on the Passivation of Stainless Steels[J]. Corrosion Science, 1996,38(7):1203-1220.
[13]吴欣强,付尧,柯伟,等. 高氮奥氏体不锈钢的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2016, 36(3):197-204.
WU Xinqiang, FU Yao, KE Wei, et al. Research on Corrosion Behavior of High Nitrogen Austenitic Stainless Steel[J]. Journal of Chinese Society for Corrosion and Protection, 2016, 36(3):197-204.
[14]FENG H, JIANG Z, LI H, et al. Influence of Nitrogen on Corrosion Behaviour of High Nitrogen Martensitic Stainless Steels Manufactured by Pressurized Metallurgy[J]. Corrosion Science, 2018, 144(11):288-300.
[15]赵琳,田志凌,彭云,等. 1Cr22Mn16N高氮钢激光焊接Ⅰ.焊接保护气体组成和热输入对焊缝氮含量及气孔性的影响[J]. 焊接学报, 2007, 28(8):89-91.
ZHAO Lin, TIAN Zhiling, PENG Yun, et al. Laser Welding of High Nitrogen Steel 1Cr22Mn16N Ⅰ. Influence of Welding Shielding Gas Composition and Heat Input on Weld Nitrogen Content and Porosity[J]. Transactions of the China Welding Institution, 2007, 28(8):89-91.
[16]PAN C, LIU L, LI Y, et al. The Electrochemical Corrosion Behavior of Nanocrystalline 304 Stainless Steel Prepared by Magnetron Sputtering[J]. Journal of the Electrochemical Society, 2012, 159(11):C453-C460.
[17]RALSTON K D, BIRBILIS N, DAVIES C H J. Revealing the Relationship between Grain Size and Corrosion Rate of Metals[J]. Scripta Materialia, 2010, 63(12):1201-1204.
[18]GARCIA C, MARTIN F, TIEDRA P D, et al. Pitting Corrosion of Welded Joints of Austenitic Stainless Steels Studied by Using an Electrochemical Minicell[J]. Corrosion Science, 2008, 50(4):1184-1194.
[19]石林,郑志军,高岩.不锈钢的点蚀机理及研究方法[J].材料导报, 2015, 29(23):79-85.
SHI Lin, ZHENG Zhijun, GAO Yan. Pitting Corrosion Mechanism and Research Methods of Stainless Steel[J]. Materials Reports, 2015, 29(23):79-85.
[20]潘莹,张三平,周建龙,等. 金属材料点蚀形核过程研究进展[J]. 装备环境工程, 2010(4):67-70.
PAN Ying, ZHANG Sanping, ZHOU Jianlong, et al. Research Progress on Pitting Nucleation Process of Metallic Materials[J]. Equipment Environmental Engineering, 2010(4):67-70.
[21]LI H B, JIANG Z H, YANG Y, et al. Pitting Corrosion and Crevice Corrosion Behaviors of High Nitrogen Austenitic Stainless Steels[J]. International Journal of Minerals Metallurgy & Materials, 2009, 16(5):517-524.
[22]郭龙龙,郑华林,李悦钦,等.热丝脉冲TIG堆焊Inconel625的组织及性能[J]. 中国表面工程, 2016, 29(2):77-84.
GUO Longlong, ZHENG Hualin, LI Yueqin, et al. Microstructure and Properties of Inconel625 in Hot Wire Pulse TIG Surfacing [J]. China Surface Engineering, 2016, 29(2):77-84.
|