[1]苏祖强, 汤宝平, 刘自然, 等. 基于正交半监督局部Fisher判别分析的故障诊断[J]. 机械工程学报, 2014, 50(18):7-13.
SU Zuqiang, TANG Baoping, LIU Ziran, et al. Fault Diagnosis Method Based on Orthogonal Semi-supervised Local Fisher Discriminant Analysis[J]. Chinese Journal of Mechanical Engineering, 2014, 50(18):7-13.
[2]苗强, 蒋京, 张恒, 等. 工业大数据背景下的航空智能发动机:机遇与挑战[J]. 仪器仪表学报, 2019, 40(7):1-12.
MIAO Qiang, JIANG Jing, ZHANG Heng, et al. Development of Aviation Intelligent Engine under Industrial Big Data:Chances and Challenges[J]. Chinese Journal of Scientific Instrument, 2019, 40(7):1-12.
[3]SU Zuqiang, TANG Baoping, MA Jinghua, et al. Fault Diagnosis Method Based on Incremental Enhanced Supervised Locally Linear Embedding and Adaptive Nearest Neighbor Classifier[J]. Measurement, 2014, 48(1):136-148.
[4]李凌均, 韩捷, 李朋勇, 等. 基于矢双谱的智能故障诊断方法[J]. 机械工程学报, 2011, 47(11):64-68.
LI Lingjun, HAN Jie, LI Pengyong, et al. Intelligent Fault Diagnosis Method Based on Vector-bispectrum[J]. Journal of Mechanical Engineering, 2011, 47(11):64-68.
[5]石明宽,赵荣珍.基于标准正交判别投影的转子故障数据集降维方法[J]. 振动与冲击, 2020, 39(18):96-102.
SHI Mingkuan, ZHAO Rongzhen. Dimension Reduction of a Rotor Faults Data Set Based on Standard Orthogonal Discriminant Projection[J]. Journal of Vibration and Shock, 2020, 39(18):96-102.
[6]梁超, 路鹏, 郜宁, 等. 基于LPP的转子振动故障特征提取方法[J]. 振动工程学报, 2018, 31(3):539-544.
LIANG Chao, LU Peng, GAO Ning, et al. Feature Extraction of Rotor Vibration Fault Based on LPP Algorithm[J]. Journal of Vibration Engineering, 2018, 31(3):539-544.
[7]LI B, ZHENG C H, HUANG D S. Locally Linear Discriminant Embedding:an Efficient Method for Face Recognition[J]. Pattern Recognition, 2008, 41(12):3813-3821.
[8]LI B, LI Y, ZHANG X, et al. A Survey on Laplacian Eigenmaps Based Manifold Learning Methods[J]. Neurocomputing, 2019:336-351.
[9]YAN S, XU D, ZHANG B, et al. Graph Embedding and Extension:a General Framework for Dimensionality Reduction[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2007, 29(1):40-51.
[10]YU X, WANG X. Uncorrelated Discriminant Locality Preserving Projections[J]. IEEE Signal Processing Letters, 2008, 15:361-364.
[11]ZHAO H, SUN S, JING Z, et al. Local Structure Based Supervised Feature Extraction[J]. Pattern Recognition, 2006, 39(8):1546-1550.
[12]张晓涛, 唐力伟, 王平, 等. 基于半监督PCA-LPP流形学习算法的故障降维辨识[J]. 中南大学学报(自然科学版), 2016, 47(5):1559-1564.
ZHANG Xiaotao, TANG Liwei, WANG Ping, et al. Fault Identification and Dimensionality Reduction Method Based on Semi-supervised PCA-LPP Manifold Learning Algorithm[J]. Journal of Central South University, 2016, 47(5):1559-1564.
[13]LIU R, YANG B, ZIO E, et al. Artificial Intelligence for Fault Diagnosis of Rotating Machinery:a Review[J]. Mechanical Systems and Signal Processing, 2018, 108:33-47.[14]苏祖强, 汤宝平, 姚金宝. 基于敏感特征选择与流形学习维数约简的故障诊断[J]. 振动与冲击, 2014, 33(3):70-75.
SU Zuqiang, TANG Baoping, YAO Jinbao. Fault Diagnosis Based on Sensitive Feature Selection and Manifold Learning Dimension Reduction[J]. Journal of Vibration and Shock, 2014, 33(3):70-75.
[15]赵孝礼, 赵荣珍. 全局与局部判别信息融合的转子故障数据集降维方法研究[J]. 自动化学报, 2017, 43(4):560-567.
ZHAO Xiaoli, ZHAO Rongzhen. A Method of Dimension Reduction of Rotor Faults Data Set Based on Fusion of Global and Local Discriminant Information[J]. Acta Automatica Sinica, 2017, 43(4):560-567.
[16]CAI D, HE X, ZHOU K, et al. Locality Sensitive Discriminant Analysis[C]∥The 2007 International Joint Conference on Artificial Intelligence. Hyderabad:ACM, 2007:708-713.
[17]李学军, 李平, 蒋玲莉. 类均值核主元分析法及在故障诊断中的应用[J]. 机械工程学报, 2014, 50(3):123-129.
LI Xuejun, LI Ping, JIANG Lingli. Class Mean Kernel Principal Component Analysis and Its Application in, Fault Diagnosis[J]. Journal of Mechanical Engineering, 2014, 50(3):123-129.
[18]石明宽, 赵荣珍. 基于局部质心均值最小距离鉴别投影的旋转机械故障数据降维分析研究[J]. 振动工程学报, 2021, 34(2):421-430.
SHI Mingkuan, ZHAO Rongzhen. Dimensional Reduction Analysis of Rotating Machinery Fault Data Based on Local Centroid Mean Minimum-distance Discriminant Projection[J]. Journal of Vibration Engineering, 2021, 34(2):421-430.
|