[1]ASHOUR O, ROGERS C A, KORDONSKY W. Magnetorheological Fluids: Materials, Characterization, and Devices[J]. Journal of Intelligent Material Systems and Structures,1996,7(2):123-130.
[2]DE VICENTE J, KLINGENBERG D J, HIDALGO-ALVAREZ R. Magnetorheological Fluids: a Review[J]. Soft Matter., 2011, 7(8): 3701-3710.
[3]王琪民,徐国梁,金建峰. 磁流变液的流变性能及其工程应用[J]. 中国机械工程,2002, 13(3): 267-270.
WANG Qimin, XU Guoliang, JIN Jianfeng. The Rheological Property and Engineering Application of Magnetorheological (MR) Fluids[J]. China Mechanical Engineering, 2002, 13(3): 267-270.
[4]OTSUKA K, REN X. Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys[J]. Progress in Materials Science,2005, 50(5): 511-678.
[5]JANI J M, LEARY M, SUBIC A, et al. A Review of Shape Memory Alloy Research, Applications and Opportunities[J]. Materials & Design, 2014, 56: 1078-1113.
[6]WU X, HUANG C, TIAN Z, et al. Development of a Novel Magnetorheological Fluids Transmission Device for High-power Applications[J]. Smart Materials and Structures, 2019,28(5):55021.
[7]QIN H, SONG A, ZENG X, et al. Design and Evaluation of a Small-scale Multi-drum Magnetorheological Brake[J]. Journal of Intelligent Material Systems and Structures, 2018, 29(12): 2607-2618.
[8]WANG H, BI C. Study of a Magnetorheological Brake under Compression-shear Mode[J]. Smart Materials and Structures, 2020,29(1):17001.
[9]WANG N, LIU X, KROLCZYK G, et al. Effect of Temperature on the Transmission Characteristics of High-torque Magnetorheological Brakes[J]. Smart Materials and Structures, 2019, 28(5): 57002.
[10]ZHANG X Z, GONG X L, ZHANG P Q, et al. Study on the Mechanism of The Squeeze-strengthen Effect in Magnetorheological Fluids[J]. Journal of Applied Physics,2004, 96(4): 2359-2364.
[11]黄金,谢勇,王西,等. 热效应下形状记忆合金驱动的磁流变液与滑块摩擦复合传动研究[J]. 重庆理工大学学报(自然科学版), 2019, 33(12): 61-67.
HUANG Jin, XIE Yong, WANG Xi ,et al. Study on the Combined Magnetorheological Fluid and Sliding Block Friction Driven by Shape Memory Alloy under Thermal Effect[J]. Journal of Chongqing Institute of Technology,2019, 33(12): 61-67.
[12]乔臻,黄金. 形状记忆合金温控的磁流变液自发电传动研究[J]. 中国机械工程,2015, 26(24): 3360-3365.
QIAO Zhen, HUANG Jin. Research on Magnetorheological Fluid Self-generating Electricity Transmission of Temperature Controlled by SMA[J]. China Mechanical Engineering, 2015, 26(24): 3360-3365.
[13]王西, 黄金, 谢勇. 圆锥式磁流变与形状记忆合金复合传动性能研究[J]. 机械传动, 2019,43(8):36-40.
WANG Xi, HUANG Jin, XIE Yong. Research on Conical Magnetorheological and Shape Memory Alloy Composite Transmission Performance[J]. Journal of Mechanical Transmission, 2019, 43(8):36-40.
[14]黄金,王西. 温控形状记忆合金驱动的变面磁流变传动性能研究[J]. 机械传动, 2019, 43(1): 10-14.
HUANG Jin, WANG Xi .Study on the Transmission Performance of Variable Surface Magnetorheological Driven by Temperature Controlled Shape Memory Alloy[J]. Journal of Mechanical Transmission,2019, 43(1): 10-14.
[15]MA J, HUANG H, HUANG J. Characteristics Analysis and Testing of SMA Spring Actuator[J]. Advances in Materials Science and Engineering,2013, 2013: 823594.
[16]李和言,马成男,吴健鹏,等. 铜基粉末冶金干式摩擦副磨合过程摩擦性能研究[J]. 摩擦学学报,2018, 38(2): 153-160.
LIHeyan, MA Chengnan, WU Jianfeng, et al. Friction Performance of Cu-based Powder Metallurgy Dry Friction Pairs in Running-in Process[J]. Tribology, 2018, 38: 153-160.
[17]HUANG J, ZHANG J Q, YANG Y, et al. Analysis and Design of a Cylindrical Magneto-Rheological Fluid Brake[J]. Journal of Materials Processing Tech., 2002, 129(1): 559-562.
[18]麻建坐. 形状记忆合金驱动的磁流变液传动及应用研究[D]. 重庆:重庆大学, 2013.
MA Jianzuo. Magnetorheological Fluid Transmission and Application Research Driven by Shape Memory Alloy[D]. Chongqing :Chongqing University, 2013.
|