[1]袁巨龙, 张飞虎, 戴一帆, 等.超精密加工领域科学技术发展研究[J].机械工程学报, 2010,46(15):161-177.
YUAN Julong, ZHANG Feihu, DAI Yifan, et al. Development Research of Science and Technologies in Ultra-precision Machining Field[J]. Journal of Mechanical Engineering, 2010,46(15):161-177.
[2]高尚, 朱祥龙, 康仁科, 等.微晶玻璃超精密磨削的表面/亚表面损伤及其材料去除机理研究[J].机械工程学报, 2017,53(7):180-188.
GAO Shang, ZHU Xianglong, KANG Renke, et al. Surface/Subsurface Damage and Material Removal Mechanism of Glass-ceramics Induced by Ultra-precision Grinding[J]. Journal of Mechanical Engineering, 2017,53(7):180-188.
[3]胡中伟, 邵铭剑, 郭建民, 等. 蓝宝石不同晶面磨削特性比较[J]. 光学精密工程, 2017,25(5):1250-1258.
HU Zhongwei, SHAO Mingjian, GUO Jianmin, et al. Comparison of Grinding Characteristics of Different Crystal Surfaces for Sapphire[J]. Optics and Precision Engineering, 2017,25(5):1250-1258.
[4]YAN Guanpeng, FANG Fengzhou. Fabrication of Optical Freeform Molds Using Slow Tool Servo with Wheel Normal Grinding[J]. CIRP Annals—Manufacturing Technology, 2019,68:341-344.
[5]ZHOU Libo, KAWAI S, HONDA M, et al. Research on Chemo-mechanical-grinding(CMG) of Si Wafer:1st Report:Development of CMG Wheel[R]. Tokyo, The Japan Society for Precision Engineering, 2002.
[6]YIN Shaohui, OHMORI H, DAI Yutang, et al. ELID Grinding Characteristics of Glass-ceramic Materials[J]. International Journal of Machine Tools & Manufacture, 2009,49(3/4):333-338.
[7]王旭, 赵萍, 吕冰海, 等.滚动轴承工作表面超精密加工技术研究现状[J].中国机械工程, 2019,30(11):1301-1309.
WANG Xu, ZHAO Ping, LYU Binghai, et al. Research Status of Ultra-precision Machining Technolo-gies for Working Surface of Rolling Bearings[J]. China Mechanical Engineering, 2019,30(11):1301-1309.
[8]ZHANG Feihu, MENG Binbin, LI Chen, et al. Material Removal Mechanism and Grinding Force Modelling of Ultrasonic Vibration Assisted Grinding for SiC Ceramics[J]. Ceramics International, 2017,43(3):2981-2993.
[9]GUO Bing, ZHAO Qingliang. Ultrasonic Vibration Assisted Grinding of Hard and Brittle Linear Micro-structured Surfaces[J]. Precision Engineering, 2016,48:98-106.
[10]ZHENG Kan, LIAO Wenhe, SUN Lianjun, et al. Investigation on Grinding Temperature in Ultrasonic Vibration-assisted Grinding of Zirconia Ceramics[J]. Machining Science and Technology, 2019, 23(4):612-628.
[11]BALAJI P S, YADAVA V. Three Dimensional Thermal Finite Element Simulation of Electro-discharge Diamond Surface Grinding[J]. Simulation Modelling Practice and Theory, 2013, 35:97-117.
[12]饶小双, 张飞虎, 刘立飞, 等.电火花机械复合磨削反应烧结SiC陶瓷的表面特征[J]. 光学精密工程, 2016,24(9):2192-2199.
RAO Xiaoshuang, ZHANG Feihu, LIU Lifei, et al. Surface Characteristics for RB-SiC Ceramics by Electrical Discharge Diamond Grinding[J]. Optics and Precision Engineering, 2016,24(9):2192-2199.
[13]KUMAR S, CHOUDHURY S K. Prediction of Wear and Surface Roughness in Electro-discharge Diamond Grinding[J]. Journal of Materials Processing Technology, 2007,191(1):206-209.
[14]LEE H, KASUGA H, OHMORI H, et al. Application of Electrolytic In-process Dressing(ELID) Grinding and Chemical Mechanical Polishing (CMP) Process for Emerging Hard-brittle Materials Used in Light-emitting Diodes[J]. Journal of Crystal Growth, 2011,326(1):140-146.
[15]ZHAI Ke, HE Qing, LI Liang, et al. Study on Chemical Mechanical Polishing of Silicon Wafer with Megasonic Vibration Assisted[J]. Ultrasonics, 2017,80:9-14.
[16]LIN Zoneching, HUANG Weishuen, DING Hao-yang. Experimental Analysis on Surface Profile of Sapphire Wafer after Polishing by Chemical Mechanical Polishing[J]. Key Engineering Materials, 2017, 749:229-233.
[17]ZHANG Zhenyu, WANG Bo, ZHOU Ping, et al. A Novel Approach of Chemical Mechanical Poli-shing Using Environment-friendly Slurry for Mercury Cadmium Telluride Semiconductors[J]. Scientific Reports, 2016,6:1-9.
[18]WANG Yongqiang, YIN Shaohui, HUANG Han, et al. Magnetorheological Polishing Using a Permanent Magnetic Yoke with Straight Air Gap for Ultra-smooth Surface Planarization[J]. Precision Engineering, 2015,40:309-317.
[19]LUO Hu, GUO Meijian, YIN Shaohui, et al. An Atomic-scale and High Efficiency Finishing Method of Zirconia Ceramics by Using Magnetorheological Finishing [J]. Applied Surface Science, 2018, 444:569-577.
[20]GONG Xinglong, LI Weihua, ZHANG Xianzhou. Thixotropy of MR Shear-thickening Fluids[J]. Smart Materials and Structures, 2010,19(12):1-6.
[21]UEDA M, DENG H, TAKIGUCHI T, et al. Plasma Assisted Polishing of Single Crystal SiC for Obtaining Atomically Flat Strain-free Surface[J]. CIRP Annals—Manufacturing Technology, 2011,60(1):571-574.
[22]CHEN Yang, ZUO Changzhi, LI Zefeng, et al. Design of Ceria Grafted Mesoporous Silica Composite Particles for High-efficiency and Damage-free Oxide Chemical Mechanical Polishing[J]. Journal of Alloys and Compounds, 2018,736:276-288.
[23]WU Yilong, LIU Weiguo, HANG Lingxia. Research on RF-generated Plasma Polishing[J]. Physics Procedia, 2012,32:590-597.
[24]高尚, 耿宗超, 吴跃勤, 等.石英玻璃超精密磨削加工的表面完整性研究[J]. 机械工程学报, 2019,55(5):186-195.
GAO Shang, GENG Zongchao, WU Yueqin,et al. Surface Integrity of Quartz Glass Induced by Ultra-precision Grinding[J]. Journal of Mechanical Engineering, 2019,55(5):186-195.
[25]王建彬, 周立波. 化学机械磨削(CMG)加工单晶硅片[J]. 人工晶体学报, 2018,47(4):715-720.
WANG Jianbin, ZHOU Libo. Introduction of Chemical Mechanical Grinding (CMG) on Single Crystal Silicon Wafer[J]. Journal of Synthetic Crystals, 2018,47(4):715-720.
[26]仇中军, 周立波, 房丰洲, 等.石英玻璃的化学机械磨削加工[J]. 光学精密工程, 2010,18(7):1554-1561.
QIU Zhongjun, ZHOU Libo, FANG Fengzhou, et al. Chemical Mecahnical Grinding for Quartz Glass[J]. Optics and Precision Engineering, 2010,18(7):1554-1561.
[27]DONG Zhigang, GAO Shang, ZHOU Ping, et al. Grinding Performance Evaluation of the Developed Chemo-mechanical Grinding (CMG) Tools for Sapphire Substrate[J]. Advanced Materials Research, 2012,565:105-110.
[28]吴东江, 曹先锁, 高航, 等.KDP晶体磨削表面缺陷及损伤分析[J]. 中国机械工程, 2008,19(6):709-712.
WU Dongjiang, CAO Xiansuo, GAO Hang, et al. Surface Defection and Damage Analysis of KDP Crystal Grinding[J]. China Mechanical Engineering, 2008,19(6):709-712.
[29]SHIMIZU J, TASHIRO T, ZHOU Libo, et al. Research on Chemo-mechanical Grinding of Large Size Quartz Glass Substrate[J]. Precision Engineering, 2009,33(4):499-504.
[30]ZHANG Tao, JIANG Feng, HUANG Hui, et al. Towards Understanding the Brittle-ductile Transition in the Extreme Manufacturing[J]. International Journal of Extreme Manufacturing, 2021, 3(2):1-21.
[31]ZHOU Libo, YAMAGUCHI M, SHIMIZU J, et al. Study on Structure Transformation of Si Wafer in Grinding Process[J]. Key Engineering Materials, 2007, 329:373-378.
[32]ZHOU Libo, SHIMIZU J, EDA H. A Novel Fixed Abrasive Process:Chemo-mechanical Grinding Technology[J]. International Journal of Manufacturing Technology and Management, 2005, 7(5):441-454.
[33]金钊, 李锦胜, 康仁科, 等.应用软磨料磨削的单晶硅超精密制造技术[J]. 光电工程, 2011, 38(12):75-80.
JIN Zhao, LI Jinsheng, KANG Renke, et al. Ultra-precision Manufacturing Technology with Soft Abrasive Grinding for Silicon[J]. Opto-electronic Engineering, 2011,38(12):75-80.
[34]KANG Renke, GAO Shang, JIN Zhuji, et al. Study on Grinding Performance of Soft Abrasive Wheel for Silicon Wafer[J]. Key Engineering Materials, 2009,416:529-534.
[35]油艳红.K9光学玻璃湿式化学机械磨削及其磨具的研究[D].大连:大连理工大学,2015.
YOU Yanhong. Research on Wet Chemical Mechanical Grinding and Its Tools for K9 Optical Glass[D]. Dalian:Dalian University of Technology, 2015.
[36]高尚. 超精密磨削硅片的软磨料砂轮的研制[D]. 大连:大连理工大学,2009.
GAO Shang. Development of Soft Abrasive Wheel Used in Ultra-precision Grinding Silicon Wafer[D]. Dalian:Dalian University of Technology, 2009.
[37]WU Ke, ZHOU Libo, ONUKI T, et al. Study on the Finishing Capability and Abrasives-sapphire Interaction in Dry Chemo-mechanical Grinding (CMG) Process[J]. Precision Engineering, 2018, 52:451-457.
[38]KAMIYA S, IWASE H, KISHITA K, et al. Study on Reaction Mechanism of Si and Pure CeO2 for Chemical-mechanical-grinding Process[J]. Journal of Vacuum Science & Technology B, 2009, 27(3):1496-1502.
[39]RAJENDRAN A, TAKAHASHI Y, KOYAMA M, et al. Tight-binding Quantum Chemical Mole-cular Dynamics Simulation of Mechano-chemical Reactions during Chemical-mechanical Polishing Process of SiO2 Surface by CeO2 Particle[J]. Applied Surface Science, 2005,244(1/4):34-38.
[40]WU Ke, ZHOU Libo, SHIMIZU J, et al. Study on the Potential of Chemo-mechanical Grinding(CMG) Process of Sapphire Wafer[J]. The International Journal of Advanced Manufacturing Technology, 2017,91(5/8):1539-1546.
[41]WU Ke, YAMAZAKI N, EBINA Y, et al. Study on Sapphire Wafer Grinding by Chromium Oxide (Cr2O3) Wheel[J]. Advanced Materials Research, 2016,1136:311-316.
[42]DAI Hengzhen, JIAO Zhenhua, WANG Bin, et al. Chemo-mechanical Grinding for K9 Optical Glass[J]. Advanced Materials Research, 2014,1002:57-60.
[43]HUANG Han, WANG B L, WANG Y, et al. Characteristics of Silicon Substrates Fabricated Using Nanogrinding and Chemo-mechanical Grinding[J]. Materials Science and Engineering A, 2008,479(1/2):373-379.
[44]王紫光, 高尚, 朱祥龙, 等.硅片低损伤磨削砂轮及其磨削性能[J]. 光学精密工程, 2017,25(10):2689-2696.
WANG Ziguang, GAO Shang, ZHU Xianglong, et al. Grinding Wheel for Low-damage Grinding of Silicon Wafers and Its Grinding Performance[J]. Optics and Precision Engineering, 2017,25(10):2689-2696.
[45]ZHOU Libo, EDA H, SHIMIZU J, et al. Defect-free Fabrication for Single Crystal Silicon Substrate by Chemo-mechanical Grinding[J]. CIRP Annals—Manufacturing Technology, 2006, 55(1):313-316.
[46]TIAN Yebing, ZHOU Libo, SHIMIZU J, et al. Elimination of Surface Scratch/Texture on the Surface of Single Crystal Si Substrate in Chemo-mechanical Grinding (CMG) Process[J]. Applied Surface Science 2009, 255(7):4205-4211.
[47]高尚. 硅片超精密磨削减薄工艺基础研究[D]. 大连:大连理工大学,2013.
GAO Shang. Fundamental Research on Silicon Wafer Thinning by Ultra-precision Grinding[D]. Dalian:Dalian University of Technology, 2013.
[48]GAO Shang, HUANG Han, ZHU Xianglong, et al. Surface Integrity and Removal Mechanism of Silicon Wafers in Chemo-mechanical Grinding Using a Newly Developed Soft Abrasive Grinding Wheel[J]. Materials Science in Semiconductor Processing, 2017, 63:97-106.
[49]关昂. 磨削蓝宝石基片的软磨料砂轮的研制及性能研究[D]. 大连:大连理工大学, 2009.
GUAN Ang. Study on Soft Abrasive Wheel Preparation and Properties of Sapphire Substrate Grinding[D]. Dalian:Dalian University of Technology, 2009.
[50]GAO Shang, DONG Zhigang, KANG Renke, et al. Design and Evaluation of Soft Abrasive Grinding Wheels for Silicon Wafers[J]. Journal of Engineering Manufacture, 2013, 227(4):578-586.
[51]陶占春. Al2O3陶瓷化学机械磨削用磨具的研制及性能研究[D]. 大连:大连理工大学, 2010.
TAO Zhanchun. The Development and Performance of Chemical-mechanical Grinding Tools for Al2O3 Ceramics[D]. Dalian:Dalian University of Technology, 2010.
[52]彭进, 张琳琪, 邹文俊, 等.双马来酰亚胺改性酚醛树脂的应用研究[J]. 金刚石与磨料磨具工程, 2003,135(3):43-45.
PENG Jin,ZHANG Linqi, ZOU Wenjun, et al. Study on the Application of Phenolic Resin Modified by Bismaleimide[J]. Diamond & Abrasives Engineering, 2003,135(3):43-45.
[53]王斌. K9光学玻璃化学机械磨削用磨具的研制及性能研究[D]. 大连:大连理工大学,2013.
WANG Bin. Research on Chemical Mechanical Grinding Tools and Corresponding Properties for K9 Optical Glass[D]. Dalian:Dalian University of Technology, 2013.
[54]TAKAHASHI H, TIAN Yebing, SASAKI J. Effects of Sodium Carbonate and Ceria Concentration on Chemo-mechanical Grinding of Single Crystal Si Wafer[J]. Advanced Materials Research, 2009, 76/78:428-433.
[55]SASAKI J, TSURUGA T, SOLTANI B H, et al. Study on Improvement of Material Removal Rate in Chemo-mechanical Grinding (CMG) of Si Wafer[J]. Key Engineering Materials, 2009,389/390:13-17.
[56]WANG Jianbin, WU Ke, MAEZAKI T, et al. Development of Binder-free CMG Abrasive Pellet and Finishing Performance on Mono-crystal Sapphire[J]. Precision Engineering, 2020,62:40-46.
[57]王振忠, 郭隐彪, 吴勇波.二维超声振动辅助化学机械磨削技术及单晶硅实验[J]. 纳米技术与精密工程, 2011,9(6):533-538.
WANG Zhenzhong, GUO Yinbiao, WU Yongbo. Two Dimensional Ultrasonic Vibration Assisted Chemical Mechanical Grinding and Experiment on Si Wafer[J]. Nanotechnology and Precision Engineering, 2011,9(6):533-538.
[58]LI Yaguo, WU Yongbo, ZHOU Libo, et al. Chemo-mechanical Manufacturing of Fused Silica by Combining Ultrasonic Vibration with Fixed-abrasive Pellets[J]. International Journal of Precision Engineering and Manufacturing, 2012,13(12):2163-2172.
[59]YANG Weiping, WU Yongbo, LIU Jun. Experimental Investigation on Hybrid Technology of Ultrasonic Vibration Assisted Chemo-mechanical Grinding (CMG) Silicon Wafer[J]. Applied Mechanics and Materials, 2013,2212(552):2290-2294.
|