[1]RAGHURAJ R, LAKSHMINARAYANAN S. Variable Predictive Models—a New Multivariate Classification Approach for Pattern Recognition Applications[J]. Pattern Recognition, 2009,42(1):7-16.
[2]杨宇, 李紫珠, 何知义, 等. QGA-VPMCD智能诊断模型研究[J]. 振动与冲击, 2015, 34(13):31-35.
YANG Yu, LI Zizhu, HE Zhiyi, et al. Research on QGA-VPMCD Intelligent Diagnosis Model [J]. Vibration and Shock, 2015, 34(13):31-35.
[3]LUO S, CHENG J, ZENG M, et al. An Intelligent Fault Diagnosis Model for Rotating Machinery Based on Multi-scale Higher Order Singular Spectrum Analysis and GA-VPMCD[J]. Measurement, 2016,87:38-50.
[4]刘吉彪, 程军圣, 马利. 基于PSODACCIW-VPMCD的滚动轴承智能检测方法[J]. 振动与冲击, 2015, 34(23):42-47.
LIU Jibiao, CHENG Jusheng, MA Li. Intelligent Detection Method of Rolling Bearing Based on PSODACCIW-VPMCD[J]. Vibration and Impact, 2015, 34(23):42-47.
[5]柏林, 曾柯, 徐冠基, 等. 基于RQA和V-VPMCD的滚动轴承故障识别方法[J].振动·测试与诊断, 2018, 38(2):314-319.
BO L, ZENG Ke, XU Guanji, et al. Rolling Bearing Fault Identification Method Based on RQA and V-VPMCD [J]. Vibration·Test and Diagnosis, 2018, 38(2):314-319.
[6]宋坤骏. 基于改进VMD、ELM和VPMCD算法的滚动轴承故障诊断方法研究[D]. 成都:西南交通大学, 2018.
SONG K. Research on Rolling Bearing Fault Diagnosis Method Based on Improved VMD, ELM and VPMCD Algorithm[D]. Chengdu:Southwest Jiaotong University, 2018.
[7]高佳程, 曹雁庆, 朱永利, 等. 基于KELM-VPMCD方法的未知局部放电类型的模式识别[J]. 电力自动化设备, 2018(5):141-147.
GAO Jiacheng, CAO Yanqing, ZHU Yongli, et al. Pattern Recognition of Unknown Partial Discharge Types Based on KELM-VPMCD Method [J]. Power Automation Equipment, 2018(5):141-147.
[8]TANG T, BO L, LIU X, et al. Variable Predictive Model Class Discrimination Using Novel Predictive Models and Adaptive Feature Selection for Bearing Faultidentification [J]. Journal of Sound and Vibration, 2018,425:137-148.
[9]郑艳艳, 朱永利, 高佳程. 基于支持向量回归的VPMCD方法及其在局部放电模式识别中的应用[J]. 华北电力大学学报(自然科学版), 2019, 46(2):23-28.
ZHENG Yanyan, ZHU Yongli, GAO Jiacheng. VPMCD Method Based on Support Vector Regression and its Application in Partial Discharge Pattern Recognition[J]. Journal of North China Electric Power University(Natural Science Edition), 2019, 46 (2):23-28.
[10]LIU X, BO L. Identification of Resonance States of Rotor-bearing System Using RQA and Optimal Binary Tree SVM[J].Neurocomputing, 2015,152:36-44.
[11]KANTZ H, SCHREIBER T. Nonlinear Time Series Analysis[M].Cambridge:Cambridge University Press, 2004.
[12]KENNEL M B, BROWN R, ABARBANEL H D. Determining Embedding Dimension for Phase-space Reconstruction Using a Geometrical Construction[J].Physical Review A, 1992, 45(6):3403.
[13]PENG H, LONG F, DING C. Feature Selection Based on Mutual Information:Criteria of Max-dependency, Max-relevance, and Min-redundancy[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2005,27(8):1226-1238.
[14]BISHOP C M. Neural Networks for Pattern Re-cognition[J]. Advances in Computers, 1993, 37:119-166.
[15]HE X, CAI D, NIYOGI P. Laplacian Score for Feature Selection[J].Advances in Neural Information Processing Systems, 2006,18:507.
[16]ZHANG D, CHEN S, ZHOU Z. Constraint Score:a New Filter Method for Feature Selection with Pairwise Constraints[J]. Pattern Recognition, 2007,41(5):1440-1451.
[17]ROBNIK-IKONJA M, KONONENKO I. Theoretical and Empirical Analysis of RELIEFF and RRELIEFF[J]. Machine Learning, 2003,53(1):23-69.
[18]STEUER R, KURTHS J, DAUB C O, et al. The Mutual Information:Detecting and Evaluating Dependencies between Variables[J]. Bioinformatics, 2002,18(S):231-240.
[19]VEER L J V T, HONGYUE D, VIJVER M J V D, et al. Gene Expression Profiling Predicts Clinical Outcome of Breast Cancer[J]. Nature, 2002, 415(6871):530.
[20]SHEN W, GUO X, WU C, et al. Forecasting Stock Indices Using Radial Basis Function Neural Networks Optimized by Artificial Fish Swarm Algorithm[J].Knowledge-based Systems, 2011, 24(3):378-385.
[21]LI H, GUO S, LI C, et al. A Hybrid Annual Power Load-forecasting Model Based on Generalized Regression Neural Network with Fruit Fly Optimization Algorithm[J].Knowledge-based Systems, 2013, 37:378-387.
|