[1]袁巨龙, 张飞虎, 戴一帆, 等.超精密加工领域科学技术发展研究[J]. 机械工程学报, 2010, 46(15):161-177.
YUAN Julong, ZHANG Feihu, DAI Yifan, et al. Research on the Development of Science and Technology in the Field of Ultra-precision Machining[J]. Journal of Mechanical Engineering, 2010, 46(15):161-177.
[2]文东辉, 周海锋, 徐钉,等. 超光滑表面加工技术研究进展[J]. 机电工程, 2015, 32(5):579-584.
WEN Donghui, ZHOU Haifeng, XU Ding, et al. Research Progress of Ultra-smooth Surface Machining Technology[J]. Electromechanical Engineering, 2015, 32(5):579-584.
[3]YOSHIHARU N, TSUWA H. Ultra Finishing of Sapphire Single Crysta1[J].Annals of the CIRP,1977,26:325-329.
[4]KUBOTA A, SHINBAYASHI Y, MIMURA H, et al. Investigation of the Surface Removal Process of Silicon Carbide in Elastic Emission Machining[J]. Journal of Electronic Materials, 2007, 36(1):92-97.
[5]WATANABE J, SUZUKI J, KOBAYASHI A. High Precision Polishing of Semiconductor Materials Using Hydrodynamic Principle[J]. CIRP Annals—Manufacturing Technology, 1981, 30(1):91-95.
[6]WEN Donghui, PIAO Zhongyu, ZHANG Taihua. A Hydrodynamic Suspension Polishing Method for Ultrasmooth and Low-damage Surface[J]. Precision Engineering, 2016, 46:278-287.
[7]郑子军, 李攀星, 蔡东海, 等. 液动压悬浮抛光流场的数值模拟及抛光工具盘结构优化[J]. 中国机械工程, 2019, 30(6):638-643.
ZHENG Zijun, LI Panxing, CAI Donghai, et al. Numerical Simulation of Hydrodynamic Suspension Polishing Flow Field and Optimization of Polishing Tool Disc Structure[J]. China Mechanical Engineering, 2019, 30(6):638-643.
[8]KUBOTA A, MIMURA H, INAGAKI K. Effect of Particle Morphology on Removal Rate and Surface Topography in Elastic Emission Machining[J]. Journal of the Electrochemical Society, 2006, 153(9):874-878.
[9]李庆宇. 基于流体动力润滑效应的双转弹性发射加工技术研究[D].长沙:国防科学技术大学, 2015.
LI Qingyu. Study on the Technology of Elastic Emission Machining with Dual-rotor Based on Hydrodynamic Lubrication[D]. Changsha:National University of Defense Technology, 2015.
[10]弥谦,秦琳,李宏,等.液浮法抛光优化技术[J].光学技术,2019,45(2):251-256.MI Qian, QIN Lin, LI Hong, et al. Optimization Technology of Liquid Float Polishing[J]. Optical Technique, 2019,45(2):251-256.
[11]计时鸣,於加峰,洪滔,等. 槽形抛光工具形状对液流悬浮抛光加工效果的影响[J]. 农业工程学报,2012,28(增刊1):87-91.
JI Shiming, YU Jiafeng, HONG Tao, et al. The Influence of the Shape of the Groove Polishing Tool on the Processing Effect of Liquid Suspension Polishing[J]. Journal of Agricultural Engineering, 2012, 28(S1):87-91.
[12]郑子军, 薛凯元, 文东辉, 等.线性液动压抛光加工的流体动压特性研究[J]. 中国机械工程, 2020, 31(8):907-914.
ZHENG Zijun, XUE Kaiyuan, WEN Donghui, et al. Research on Fluid Dynamic Pressure Characteristics of Linear Hydrodynamic Polishing[J]. China Mechanical Engineering, 2020, 31(8):907-914.
[13]温诗铸,黄平,田煜,等. 摩擦学原理[M]. 北京:清华大学出版社, 2018.
WEN Shizhu, HUANG Ping, TIAN Yu, et al. Principle of Tribology[M]. Beijing:Tsinghua University Press, 2018.
[14]吴德会. 基于最小二乘支持向量机的铣削加工表面粗糙度预测模型[J]. 中国机械工程, 2007,18(7):838-841.
WU Dehui. Predictive Model of Milling Surface Roughness Based on Least Squares Support Vector Machine[J]. China Mechanical Engineering, 2007,18(7):838-841.
[15]陈法法, 杨勇, 陈保家, 等. 基于模糊信息粒化与小波支持向量机的滚动轴承性能退化趋势预测[J]. 中国机械工程, 2016,27(12):1655-1661.
CHEN Fafa, YANG Yong, CHEN Baojia, et al. Prediction of Rolling Bearing Performance Degradation Trend Based on Fuzzy Information Granulation and Wavelet Support Vector Machine[J]. China Mechanical Engineering, 2016,27(12):1655-1661.
|