中国机械工程 ›› 2021, Vol. 32 ›› Issue (18): 2217-2230,2238.DOI: 10.3969/j.issn.1004-132X.2021.18.011
葛吉民1,2;邓朝晖1,2;李尉1,2;李重阳1,2;陈曦3;彭德平4
出版日期:
2021-09-25
发布日期:
2021-10-14
通讯作者:
邓朝晖(通信作者),男,1968年生,教授、博士研究生导师。研究方向为先进加工技术、智能制造。发表文章200余篇。E-mail:edeng0080@vip.sina.com。
作者简介:
葛吉民,男,1995年生,博士研究生。研究方向为机器人力控制技术、机器人智能磨抛技术。发表论文1篇。E-mail:1642948782@qq.com。
基金资助:
GE Jimin1,2;DENG Zhaohui1,2;LI Wei1,2;LI Chongyang1,2;CHEN Xi3;PENG Deping4
Online:
2021-09-25
Published:
2021-10-14
摘要: 低成本、高灵巧度机器人在磨抛领域中的应用越来越广,而对机器人磨抛力的柔顺控制是降低工件表面粗糙度、获得高形状精度和表面完整性的关键。综述了国内外学者在机器人磨抛力主动柔顺控制策略、被动柔顺控制装置、主被动柔顺控制方法等方面的主要研究成果,分析了各种典型控制方法的原理及实现过程,比较了各方法的优缺点,并指出了目前研究存在的问题。最后总结了关键技术难点并展望了发展趋势。
中图分类号:
葛吉民, 邓朝晖, 李尉, 李重阳, 陈曦, 彭德平. 机器人磨抛力柔顺控制研究进展[J]. 中国机械工程, 2021, 32(18): 2217-2230,2238.
GE Jimin, DENG Zhaohui, LI Wei, LI Chongyang, CHEN Xi, PENG Deping. Research Progresses of Robot Grinding and Polishing Force Compliance Controls[J]. China Mechanical Engineering, 2021, 32(18): 2217-2230,2238.
[1]ZHU D H, FENG X Z, XU X H, et al. Robotic Grinding of Complex Components:a Step towards Efficient and Intelligent Machining—Challenges, Solutions, and Applications[J]. Robotics and Computer-Integrated Manufacturing, 2020, 65:101908. [2]张铁, 张斌. 机器人砂带磨削路径优化插补算法[J]. 中国机械工程, 2018, 29(8):983-990. ZHANG Tie, ZHANG Bin. Optimal Interpolation Algorithm for Robotic Belt Grinding Path[J]. China Mechanical Engineering, 2018, 29(8):983-990. [3]黄云, 肖贵坚, 邹莱, 等. 航空发动机叶片机器人精密砂带磨削研究现状及发展趋势[J]. 航空学报, 2019, 40(3):53-72. HUANG Yun,XIAO Guijian, ZOU Lai, et al. Research Status and Development Trend of Aero-engine Blade Robot Precision Abrasive Belt Grinding[J]. Journal of Aeronautics, 2019, 40(3):53-72. [4]LIU L, ULRICH B J, ELBESTAWI M A. Robotic Grinding Force Regulation:Design, Implementation and Benefits[C]∥IEEE International Conference on Robotics and Automation. Cincinnati, 1990:258-265. [5]WANG Q L, WANG W, ZHENG L Y, et al. Force Control-based Vibration Suppression in Robotic Grinding of Large Thin-wall Shells[J]. Robotics and Computer-integrated Manufacturing, 2021, 67:102031. [6]陈贵亮. 研抛大型复杂曲面的自主作业微小机器人研究[D]. 长春:吉林大学, 2009. CHEN Guiliang. Research on Autonomous Robots for Grinding Large Complex Surfaces[D]. Changchun:Jilin University, 2009. [7]计时鸣, 黄希欢. 工业机器人技术的发展与应用综述[J]. 机电工程, 2015, 32(1):1-13. JI Shiming, HUANG Xihuan. Overview of the Development and Application of Industrial Robot Technology[J]. Mechatronic Engineering, 2015, 32(1):1-13. [8]陶波, 赵兴炜, 李汝鹏. 机器人测量-操作-加工一体化技术研究及其应用[J]. 中国机械工程, 2020, 31(1):49-56. TAO Bo, ZHAO Xingwei, LI Rupeng, et al. Research and Application of Robotic Measurement-operation-processing Integrated Technology[J]. China Mechanical Engineering, 2020, 31(1):49-56. [9]ZHU D H, XU X H, ZE Y Y, et al. Analysis and Assessment of Robotic Belt Grinding Mechanisms by Force Modeling and Force Control Experiments[J]. Tribology International, 2018, 120:93-98. [10]段练, 黄云, 邹莱. 机器人砂带磨削GH4169镍基高温合金表面完整性研究[J]. 中国机械工程, 2019, 30(17):2044-2050. DUAN Lian, HUANG Yun, ZOU Lai. Research on Surface Integrity of GH4169 Nickel-based Superalloy by Robot Belt Grinding[J]. China Mechanical Engineering, 2019, 30(17):2044-2050. [11]秦振江, 赵吉宾, 李论,等. 砂带抛光机器人力/位混合主动柔顺控制研究[J]. 制造业自动化, 2019, 41(4):122-126. QIAN Zhenjiang, ZHAO Jibin, LI Lun, et al. Research on Force/Position Hybrid Active Compliance Control of Abrasive Belt Polishing Robot[J]. Manufacturing Automation, 2019, 41(4):122-126. [12]高培阳. 基于力传感器的工业机器人恒力磨抛系统研究[D]. 武汉:华中科技大学, 2019. GAO Peiyang. Research on Constant Force Grinding and Polishing System of Industrial Robot Based on Force Sensor[D]. Wuhan:Huazhong University of Science and Technology, 2019. [13]DOMROES F, KREWET C, KUHLENKOETTER B. Application and Analysis of Force Control Strategies to Deburring and Grinding[J]. Modern Mechanical Engineering, 2013, 3(2A):11-18. [14]范泽焘. 机器人磨抛的主动柔顺控制技术研究[D]. 南京:南京航空航天大学, 2017. FAN Zetao. Research on Active Compliant Control Technology of Robot Grinding and Polishing[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2017. [15]缪新. 机器人磨削系统控制技术研究[D]. 南京:南京航空航天大学, 2015. MIU Xin. Research on Control Technology of Robot Grinding System[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2015. [16]ANDERSON R J, SPONG M W. Hybrid Impedance Control of Robotic Manipulators[J]. IEEE Journal on Robotics and Automation, 1988, 4(5):549-556. [17]SURDILOVIC D, ZHAO H, SCHRECK G, et al. Advanced Methods for Small Batch Robotic Machining of Hard Materials[C]∥7th German Confe-rence on Robotics. Munich, 2012:1-6. [18]KAZEROONI H. Automated Robotic Deburring Using Impedance Control[J]. IEEE Control Systems Magazine, 1988, 8(1):21-25. [19]蒋再男, 刘宏, 黄剑斌, 等. 基于阻抗内环的新型力外环控制策略[J]. 航空学报, 2009, 30(8):161-166. JIANG Zainan, LIU Hong, HUANG Jianbin, et al. Novel Explicit Force Control Strategy Based on Impedance Inner Control[J]. Acta Aeronauticaet Astronautica Sinica, 2009, 30(8):161-166. [20]JINNO M, OZAKI F, YOSHIMI F, et al. Deve-lopment of a Force Controlled Robot for Grinding, Chamfering and Polishing[C]∥IEEE International Conference on Robotics and Automation. Nagoya, 1995:1455-1460. [21]NAGATA F, KUSUMOTO Y, WATANABE K, et al. Polishing Robot for PET Bottle Molds Using a Learning-based Hybrid Position/Force Controller[C]∥2004 5th Asian Control Conference. Melbourne, 2004:914-921. [22]NAGATA F, HASE T, HAGA Z, et al. CAD/CAM-based Position/Force Controller for a Mold Polishing Robot[J]. Mechatronics, 2007, 17(4/5):207-216. [23]NAGATA F, WATAVABE K, KUSUMOTO Y, et al. Generation of Normalized Tool Vector from 3-axis CL Data and Its Application to a Mold Polishing Robot[C]∥2004 IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, 2004:3971-3976. [24]NAGATA F, HASE T, HAGA Z, et al. CAD/CAM-based Position/Force Control for a Ball-end Abrasive Tool and Its Application to an Industrial Robot[J]. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 2008, 2(4):742-752. [25]DINE K M E, LAURENT L, OUCEF M, et al. Hybrid Position/Force Control with Compliant Wrist for Grinding[C]∥MUGV 2018 (Machines Usinage Grande Vitesse) & Manufacturing. Clermont, 2018:1-11. [26]仇鹏, 方鹏. 基于前馈补偿的3R机械臂力位混合控制研究[J]. 农业装备与车辆工程, 2018, 56(6):35-38. QIU Peng, FANG Peng. Research on Force Control of 3R Manipulator Force Based on Feedforward Compensation[J]. Agricultural Equipment and Vehicle Engineering, 2018, 56(6):35-38. [27]SERAJI H, COLBAUGH R. Force Tracking in Impedance Control[C]∥IEEE International Conference on Robotics and Automation. Vienna, 1993:153-159. [28]LANGE F, BERTLEFF W, SUPPA M, et al. Force and Trajectory Control of Industrial Robots in Stiff Contact[C]∥IEEE International Conference on Robotics and Automation. Karlsruhe, 2013:1927-2934. [29]CAO H L. Dynamic Adaptive Hybrid Impedance Control for Dynamic Contact Force Tracking in Uncertain Environments[J]. IEEE Access, 2019, 7:83162-83174. [30]LI Z, LI J, YANG K. Adaptive Robust Coordinated Control of Multiple Mobile Manipulators Interacting with Rigid Environments[J]. Automatica, 2010, 46(12):2028-2034. [31]尤波, 苗壮, 许家忠, 等. 玻璃钢管体螺纹磨削机器人控制策略研究[J]. 玻璃钢/复合材料, 2016(5):36-40. YOU Bo, MIAO Zhuang, XU Jiazhong, et al. Research on Control Strategy of Glass Steel Pipe Thread Grinding Robot[J]. FRP / Composite Material, 2016(5):36-40. [32]甘亚辉, 段晋军, 戴先中, 等. 非结构环境下的机器人自适应变阻抗力跟踪控制方法[J]. 控制与决策, 2019, 34(10):2134-2142. GAN Yahui, DUAN Jinjun, DAI Xianzhong, et al. Robot Adaptive Variable Impedance Tracking Control Method in Non-structural Environment[J]. Control and Decision, 2019, 34(10):2134-2142. [33]FANAEI A, MOHAMMAD F. Adaptive Neuro-fuzzy Controller for Hybrid Position/Force Control of Robotic Manipulators[J]. IFAC Proceedings Volumes, 2005, 38(1):127-132. [34]RAVANDI A, KARAMALI K, ESMAEEL D, et al. Hybrid Force/Position Control of Robotic Arms Manipulating in Uncertain Environments Based on Adaptive Fuzzy Sliding Mode Control[J]. Applied Soft Computing, 2018, 70:864-874. [35]LATIFINAVID M, DONDER A, ILHAN K, et al. High-performance Parallel Hexapod-robotic Light Abrasive Grinding Using Real-time Tool Deflection Compensation and Constant Resultant Force Control[J]. The International Journal of Advanced Manufacturing Technology, 2018, 96(9/12):3403-3416. [36]GHAJAR, M H, KESHMIFI M, BAHRAMI J, et al. Neural-network-based Robust Hybrid Force/Position Controller for a Constrained Robot Manipulator with Uncertainties[J]. Transactions of the Institute of Measurement and Control, 2018, 40(5):1625-1636. [37]RANI K, KUMAR N. Intelligent Controller for Hybrid Force and Position Control of Robot Manipulators Using RBF Neural Network[J]. International Journal of Dynamics and Control, 2019, 7(2):767-775. [38]TANG S X, GU J, TANG K, et al. Eigen Solution of Neural Networks and Its Application in Prediction and Analysis of Controller Parameters of Grinding Robot in Complex Environments[J]. Complexity, 2019, 2019:5296123. [39]GRACIA L, SOLANES J E, MUOZ B, et al. Adaptive Sliding Mode Control for Robotic Surface Treatment Using Force Feedback[J]. Mechatronics, 2018, 52:102-118. [40]ZHANG T, YE Y, YAN B, et al. An Adaptive Sliding-mode Iterative Constant-force Control Method for Robotic Belt Grinding Based on a One-dimensional Force Sensor[J]. Sensors, 2019,19(7):1635. [41]李琳, 肖佳栋, 张铁, 等. 基于自适应迭代的机器人曲面恒力跟踪[J]. 北京航空航天大学学报, 2019, 45(4):4-12. LI Lin, XIAO Jiadong, ZHANG Tie, et al. Forced Force Tracking of Robot Surface Based on Adaptive Iteration[J]. Journal of Beijing Aerospace University, 2019, 45(4):4-12. [42]XU X H, ZHU D H, ZHANG H Y, et al. Application of Novel Force Control Strategies to Enhance Robotic Abrasive Belt Grinding Quality of Aero-engineblades[J]. Chinese Journal of Aeronautics, 2019, 32(10):2368-2382. [43]丁毓峰, 闵新普. 曲面零件抛光机器人的力/位混合控制方法[J]. 系统仿真学报, 2020, 32 (5):817-825. DING Yufeng, MIN Xinpu. Force/Bit Mixing Control Method for Curved Part Polishing Robot[J]. Journal of System Simulation, 2020, 32 (5):817-825. [44]王雨, 张慧博, 戴士杰, 等. 风电叶片打磨机器人柔性末端终端滑模力控制[J]. 计算机集成制造系统, 2019, 25(7):1757-1766. WANG Yu, ZHANG Huibo, DAI Shijie, et al. Sliding Mode Force Control of Flexible End Terminal of Wind Power Blade Grinding Robot[J]. Computer Integrated Manufacturing Systems, 2019, 25(7):1757-1766. [45]LIU X, ZHANG T, LI J. A Novel End-effector for Robotic Compliant Polishing[C]∥IEEE International Conference on Robotics and Biomimetics. Kuala Lumpur, 2018:1858-1863. [46]LIU X N, ZHANG T, LI J, et al. A New Design of Flexible Constant Force Grinding Head and Experimental Verification[C]∥IEEE International Conference on Information and Automation. Wu-yishan, 2018:1146-1151. [47]赵源. 螺旋桨磨削机器人的末端执行器设计与接触力控制研究[D]. 武汉:华中科技大学, 2015. ZHAO Yuan. Research on End Actuator Design and Contact Force Control of Propeller Grinding Robot[D].Wuhan:Huazhong University of Science and Technology, 2015. [48]CHEN F, ZHAO H, LI D W, et al. Contact Force Control and Vibration Suppression in Robotic Polishing with a Smart End Effector[J]. Robotics and Computer-integrated Manufacturing, 2019, 57:391-403. [49]GIERLAK P, SZUSTER M. Adaptive Position/Force Control for Robot Manipulator in Contact with a Flexible Environment[J]. Robotics and Autonomous Systems, 2017,95:80-101. [50]詹建明. 机器人研磨自由曲面时的作业环境与柔顺控制研究[D]. 长春:吉林大学, 2002. ZHAN Jianming. Research on the Working Environment and Compliance Control when the Robot Grinds Free-form Surfaces[D]. Changchun:Jilin University, 2002. [51]XIE Q L, ZHAO H, WANG T, et al. Adaptive Impedance Control for Robotic Polishing with an Intelligent Digital Compliant Grind[J]. International Conference on Intelligent Robotics and Applications. Shenyang, 2019:482-484. [52]袁乐天. 基于主动柔顺法兰的抛光机器人自适应阻抗控制研究[D]. 哈尔滨:哈尔滨工业大学, 2018. YUAN Letian. Research on Adaptive Impedance Control of Polishing Robot Based on Active Compliant Flange[D]. Harbin:Harbin Institute of Technology, 2018. [53]DU H, SUN Y, FENG D, et al. Automatic Robotic Polishing on Titanium Alloy Parts with Compliant Force/Position Control[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2015, 229(7):1180-1192. [54]张秀丽, 谷小旭, 赵洪福, 等. 一种基于串联弹性驱动器的柔顺机械臂设计[J]. 机器人, 2016, 38(4):385-394. ZHANG Xiuli, GU Xiaoxu, Zhao Hongfu, et al. Design of a Compliant Mechanical Arm Based on a Series of Elastic Actuators[J]. Robot, 2016, 38(4):385-394. [55]黄婷, 孙立宁, 王振华,等. 基于被动柔顺的机器人抛磨力/位混合控制方法[J]. 机器人, 2017, 39(6):776-785. HUANG Ting, SUN Lining, WANG Zhenhua. Passively Compliant Robotic Polishing Force/Bit Mixing Control Method[J]. Robot, 2017, 39(6):776-785. [56]黄婷. 基于被动柔顺控制的机器人抛磨方法研究[D]. 苏州:苏州大学, 2017. HAUNG Ting. Research on Robot Polishing Method Based on Passive Compliance Control[D]. Suzhou:Suzhou University, 2017. [57]殷跃红, 尉忠信, 朱剑英, 等. 机器人柔顺控制研究[J]. 机器人, 1998, 20(3):73-81. YIN Yuehong, WEI Zhongxin, ZHU Jianying, et al. Robot Compliance Control Research[J]. Robot, 1998, 20(3):73-81. [58]胡建元, 黄心汉, 陈锦江, 等. 机器人的力控制和顺应控制研究进展[J]. 机器人, 1992, 14(2):52-57. HU Jianyuan, HUANG Xinhan, CHEN Jinjiang, et al. Research Progress on Force Control and Compliance Control of Robots[J]. Robot, 1992, 14(2):52-57. [59]邓朝晖, 万林林, 张荣辉. 难加工材料高效精密磨削技术研究进展[J]. 中国机械工程, 2008, 19(24):3018-3023. DENG Zhaohui, WAN Linlin, ZHANG Ronghui. Research Progress of High-efficiency Precision Grinding Technology for Difficult-to-machine Materials[J]. China Mechanical Engineering, 2008, 19(24):3018-3023. [60]傅玉灿, 田霖, 徐九华, 等. 磨削过程建模与仿真研究现状[J]. 机械工程学报, 2015, 51(7):197-205. FU Yucan, TIAN Sen, XU Jiuhua, et al. Research Status of Modeling and Simulation of Grin-ding Process[J]. Journal of Mechanical Enginee-ring, 2015, 51(7):197-205. [61]张继尧, 韩建海, 刘赛赛, 等. 工业机器人抛光作业的主动柔顺控制系统[J]. 机械科学与技术, 2019, 38(6):909-914. ZHANG Jiyao, HAN Jihai, LIU Saisai. Active Compliance Control System for Industrial Robot Polishing[J]. Machinery Science and Technology, 2019, 38 (6):909-914. [62]HOGAN N. Impedance Control—an Approach to Manipulation. Ⅰ-Theory. Ⅱ-Implementation. Ⅲ- Applications[J]. Journal of Dynamic Systems Measurement and Control, 1985, 107:1-24. [63]WHITNEY D E. Quasi-static Assembly of Compliantly Supported Rigid Parts[J]. Journal of Dynamic Systems Measurement & Control, 1982, 104(1):65-77. [64]WHITNEY D E. Designing Chamfers[J]. International Journal of Robotics Research, 1983, 2(4):3-18. [65]WHITNEY D E, NEVINS J L. What is the Remote Center Compliance(RCC) and What Can It Do[C]∥The ninth International Symposium on Industrial Robots. Washington D C, 1979:135-152. [66]刘哲, 邹涛, 孙威, 等. 结合实时优化遗传算法的磨削机器人阻抗控制[J]. 控制理论与应用, 2018, 35(12):1788-1795. LIU Zhe, ZOU Tao, SUN Wei, et al. Impedance Control of Grinding Robot Combined with Real-time Optimization Genetic Algorithm[J]. Control Theory and Application, 2018, 35(12):1788-1795. [67]刘哲, 宋锐, 邹涛, 等. 基于模型预测控制的磨削机器人末端力跟踪控制算法[J]. 山东大学学报(工学版), 2018, 48(1):42-49. LIU Zhe, SONG Rui, ZOU Tao, et al. End Force Tracking Control Algorithm for Grinding Robot Based on Model Predictive Control[J]. Journal of Shandong University (Engineering), 2018, 48(1):42-49. [68]BURN K, SHORT M, BICKER R. et al. Adaptive and Nonlinear Fuzzy Force Control Techniques Applied to Robots Operating in Uncertain Environments[J]. Journal of Robotic Systems, 2003, 20(7):391-400. [69]CHEN P F, ZHAO H, YAN X, et al. Force Control Polishing Device Based on Fuzzy Adaptive Impedance Control[C]∥International Conference on Intelligent Robotics and Applications. Cham, 2019:181-194. [70]XIAN J S, XI Z. Fuzzy Adaptive Hybrid Impedance Control for Mirror Milling System[J]. Mechatronics, 2018, 53:20-27. [71]MALLAPRAGADA V, EROL D, SARKAR N A. et al. New Method of Force Control for Unknown Environments[J]. International Journal of Advanced Robotic Systems, 2007, 4(3):4509-4514. [72]SUN Y L, LIU H Y, CUI D D, et al. Study on the Neural Network Impedance Force Control for Inner-wall Grinding Robot[C]∥International Conference on Modelling. Shanghai, 2008:1-6. [73]孙一兰, 柳洪义, 王品, 等. 导弹弹体内壁打磨机器人及其运动轨迹规划[J].中国机械工程, 2009, 20(7):838-843. SUN Yilan, LIU Hongyi, WANG Pin, et al. Missile Shell Inner Wall Grinding Robot and Its Trajectory Planning[J]. China Mechanical Engineering, 2009, 20(7):838-843. [74]李正义. 机器人与环境间力/位置控制技术研究与应用[D]. 武汉:华中科技大学, 2011. LI Zhengyi. Research and Application of Force/Position Control Technology between Robot and Environment[D]. Wuhan:Huazhong University of Science and Technology, 2011. [75]李正义. 沿任意倾斜面的机器人力/位置控制方法研究[J]. 中国机械工程, 2012, 23(3):304-309. LI Zhengyi. Research on Robot Force/Position Control Method along Any Inclined Surface[J]. ChinaMechanical Engineering, 2012, 23(3):304-309. [76]李正义, 曹汇敏. 适应环境刚度、阻尼参数未知或变化的机器人阻抗控制方法[J]. 中国机械工程, 2014, 25(12):1581-1585. LI Zhengyi, CAO Huimin. Impedance Control Method for Robots with Unknown or Varying Environmental Stiffness and Damping Parameters[J]. China Mechanical Engineering, 2014, 25(12):1581-1585. [77]ABUDAKKA F J, ROZO L, CALDWELL D G, et al. Force-based Variable Impedance Learning for Robotic Manipulation[J]. Robotics and Autonomous Systems, 2018, 109:156-167. [78]ERNESTO S J, LUIS G, PAU M B, et al. Human-robot Cooperation for Robust Surface Treatment Using Non-conventional Sliding Mode Control[J]. ISA Transactions, 2018, 80:528-541. [79]陈峰, 费燕琼, 赵锡芳, 等. 机器人的阻抗控制[J]. 组合机床与自动化加工技术, 2005(12):46-47. CHEN Feng, FEI Yanqiong, ZHAO Xifang. Robots Impedance Control[J]. Combined Machine Tool and Automatic Processing Technology, 2005(12):46-47. [80]李二超, 李战明, 李炜, 等. 基于视觉的机器人模糊自适应阻抗控制[J]. 中南大学学报(自然科学版), 2011, 42(2):409-413. LI Erchao, LI Zhanming, LI Wei, et al. Vision-based Fuzzy Adaptive Impedance Control for Robots[J]. Journal of Central South University (Na-tural Science Edition), 2011, 42 (2):409-413. [81]MASON M T. Compliance and Force Control for Computer Controlled Manipulators[J]. IEEE Transactions on Systems, Man and Cybernetics, 1981, 11(6):418-432. [82]RAIBERT M H, CRAIG J J. Hybrid Position/Force Control of Manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 1981, 103(2):126. [83]ZHANG H, PAUL R. Hybrid Control of Robot Manipulators[C]∥IEEE International Conference on Robotics and Automation. St. Louis, 1985:602-607. [84]刘志恒. 基于力反馈的打磨机器人控制系统研究[D]. 哈尔滨:哈尔滨工业大学, 2017. LIU Zhiheng. Research on Control System of Grinding Robot Based on Force Feedback[D]. Harbin:Harbin Institute of Technology. 2017. [85]WHITNEY D E. Historical Perspective and State of the Art in Robot Force Control[J]. International Journal of Robotics Research, 1987, 6(1):3-14. [86]马树杰. 基于电流反馈的机器人直接示教技术研究[D].哈尔滨:哈尔滨工业大学, 2018. MA Shujie. Research on Robot Direct Teaching Technology Based on Current Feedback[D].Harbin:Harbin Institute of Technology, 2018. [87]SATORU G, TATSUMI U, NOBUHIRO K. Force Free Control with Independent Compensation for Industrial Articulated Robot Arms[J]. Control Engineering Practice, 2007, 15(6):627-638. [88]张昱东. 基于六维力传感器的机器人力控制方法研究[D]. 武汉:华中科技大学, 2019. ZHANG Yudong. Research on Robot Force Control Method Based on Six-dimensional Force Sensor [D].Wuhan:Huazhong University of Science and Technology, 2019. [89]张铁, 肖蒙, 邹焱飚. 基于强化学习的机器人曲面恒力跟踪研究[J]. 浙江大学学报(工学版), 2019, 53(10):1865-1873. ZHANG Tie, XIAO Meng, ZOU Yanbiao. Research on Robot Surface Constant Force Tracking Based on Reinforcement Learning[J]. Journal of Zhejiang University (Engineering Science), 2019, 53 (10):1865-1873. [90]SEGRETO T, TETI R. Machine Learning for In-process End-point Detection in Robot-assisted Polishing Using Multiple Sensor Monitoring[J]. International Journal of Advanced Manufacturing Technology, 2019, 103(2): 4173-4187. [91]王品章, 田威, 曾致贤. 叶片磨抛机器人力/位混合控制的设计与实现[J].航空制造技术, 2019, 62(11):83-89. WANG Pinzhang, TIAN Wei, ZENG Zhixian. Design and Implementation of Force/Position Hybrid Control of Blade Grinding and Polishing Robot [J]. Aeronautical Manufacturing Technology, 2019, 62 (11):83-89. [92]安涛. 基于谐波减速器柔轮应变式力反馈的关节阻抗控制研究[D]. 沈阳:东北大学, 2017. AN Tao. Research on Joint Impedance Control Based on Harmonic Reducer Flexible Wheel Strain Type Force Feedback [D]. Shenyang:Northeastern University, 2017. [93]丁亚东, 陈柏, 吴洪涛. 一种工业机器人动力学参数的辨识方法[J]. 华南理工大学学报(自然科学版), 2015, 43(3):49-56. DING Yadong, CHEN Bai, WU Hongtao. An Identification Method of Industrial Robot Dynamic Parameters[J]. Journal of South China University of Technology (Natural Science Edition), 2015, 43 (3):49-56. [94]LUO Z H, LI J F, WANG Y B, et al. Adaptive Hybrid Impedance Control Algorithm Based on Subsystem Dynamics Model for Robot Polishing[C]∥International Conference on Intelligent Robotics and Applications. Cham, 2019:163-176. [95]XU W W, MINAMI M, YASUSHI M, et al. Position/Force Control of Grinding Robot by Using Real-time Presumption of Constrained Condition[C]∥SICE, 2017 Annual Conference. Takamatsu, 2007:1861-1868. [96]WHITNEY D E. Damped Remote Center Compliance Device:US, 4379363[P]. 1983-04-12. [97]WHINEY D E, ROURKE J M. Mechanical Behavior and Design Equations for Elastomer Shear Pad Remote Center Compliances[J]. Journal of Dynamic Systems, Measurement, and Control, 1986, 108(3):223-232. [98]WHITNEY D E. The Mathematics of Coordinated Control of Prosthetic Arms and Manipulators[J]. Journal of Dynamic Systems, Measurement, and Control, 1972, 94(4):303-309. [99]HUANG H, GONG Z M, CHEN X Q, et al. Robotic Grinding and Polishing for Turbine-vane Overhaul[J]. Journal of Materials Processing Technology, 2002, 127(2):140-145. [100]CHAOUI M D, LEONARD F, ABBA G, et al. Improving Surface Roughness in Robotic Grinding Process[C]∥ROMANSY 22—Robot Design, Dynamics and Control. Cham, 2019:363-369. [101]MOHSIN I. Robotic Polishing with Force Controlled End Effector and Multi-step Path Planning[C]∥IEEE International Conference on Information and Automation (ICIA). Macao, 2017:344-348. [102]MOHAMMAD A E K, HONG J, WANG D W, et al. Design of a Force-controlled End-effector with Low-inertia Effect for Robotic Polishing Using Macro-mini Robot Approach[J]. Robotics and Computer-integrated Manufacturing, 2018, 49:54-65. [103]吕斌, 卢琦, 袁艳丽. 一种基于恒力打磨的机器人自动加工方法[J]. 机械设计与制造工程, 2017, 46(3):65-69. LYU Bin, LU Qi, YUAN Yanli. A Robot Automatic Processing Method Based on Constant Force Grinding[J]. Mechanical Design and Manufacturing Engineering, 2017, 46 (3):65-69. [104]余汉林. 面向叶片机器人砂带磨抛加工的主被动力控制技术研究[D]. 武汉:华中科技大学, 2018. YU Hanlin. Research on Main Control Technology for Blade Robot Abrasive Belt Grinding and Polishing[D]. Wuhan:Huazhong University of Science and Technology, 2018. [105]肖朝文. 面向机器人曲面抛磨的柔顺控制技术研究[D].广州:华南理工大学, 2019. XIAO Zhaowen. Research on Compliant Control Technology for Robot Surface Polishing[D]. Guangzhou:South China University of Technology, 2019. [106]牛磊. 基于柔顺控制的研磨工具系统研究. 长春:吉林大学, 2007. NIU Lei. Research on Grinding Tool System Based on Compliance Control[D]. Changchun:Jilin University, 2007. [107]LIAO L, XI F F, LIU K F. Modeling and Control of Automated Polishing/Deburring Process Using a Dual-purpose Compliant Toolhead[J]. International Journal of Machine Tools and Ma-nufacture, 2008, 48(12/13):1454-1463. [108]MA C J, WU Z G, YANG C. Mechanical Cha-racteristics of Electromagnetic Shakers and Its Force Control[C]∥52nd Aerospace Sciences Meeting. National Harbor,USA, 2014:0980. [109]SATAKE U, ENOMOTO T, OBAYASHI Y, et al. Reducing Edge Roll-off during Polishing of Substrates[J]. Precision Engineering, 2018, 51:97-102. |
[1] | 战晓磊, 辛洪兵, 汉斯·彼德 兰特斯. 基于虚拟现实的MOTOMAN-HP3型机器人运动学仿真 [J]. J4, 201016, 21(16): 1952-1954,1998. |
[2] | 姜吉光, 侯爵, 苏成志, 巴麒蛟, 田爱鑫, 徐明宇. 面向物理约束的机器人运动学标定最优位姿集规划方法研究[J]. 中国机械工程, 2024, 35(03): 472-480. |
[3] | 杜煦, 常泽鑫, 郑军强, 任鹏飞. 一种考虑关节跃度约束的实时刀具路径光顺算法[J]. 中国机械工程, 2024, 35(02): 280-286. |
[4] | 陈卓凡, 周坤, 秦菲菲, 王斌锐. 基于改进量子粒子群优化算法的机器人逆运动学求解#br#
#br#
[J]. 中国机械工程, 2024, 35(02): 293-304. |
[5] | 荣誉, 陈刚, 豆天赐, . 一种多指标综合最优的抗冲击轨迹规划方法[J]. 中国机械工程, 2024, 35(02): 305-316. |
[6] | 刘毅, 易旺民, 姚建涛, 王兴达, 余鹏, 赵永生. 狭长空间内重载调姿装配机器人的设计与研究[J]. 中国机械工程, 2024, 35(02): 324-336. |
[7] | 王慰军, 杨桂林, 杜庆皓, 陈庆盈, . 无传动间隙的3K行星齿轮减速器设计[J]. 中国机械工程, 2024, 35(01): 36-44,55. |
[8] | 陈重远, 陈珂, 刘浩, 欧阳小平, . 外肢体机器人驱动单元低速死区自适应补偿方法[J]. 中国机械工程, 2024, 35(01): 56-66. |
[9] | 叶伯生, 金雄程, 黎晗, 邵柏岩, 李晓昆, 李思澳. 伪目标迭代生成的机器人误差补偿算法[J]. 中国机械工程, 2024, 35(01): 136-143. |
[10] | 唐洋, 张吴镝, 张玉林, 王远, . 管道封堵机器人的卡瓦承压性能与管壁损伤特性仿真与试验研究[J]. 中国机械工程, 2023, 34(22): 2758-2771. |
[11] | 朱宗铭, 季苏强, 王浩, 唐蒲华, 梁亮. 基于流固耦合的介入机器人诊疗时血流动力学分析[J]. 中国机械工程, 2023, 34(21): 2592-2599. |
[12] | 许万, 程兆, 夏瑞东, 陈汉成. 一种基于动态残差的自适应鲁棒无迹卡尔曼滤波器定位算法[J]. 中国机械工程, 2023, 34(21): 2607-2614. |
[13] | 李光保, 高栋, 路勇, 平昊, 周愿愿. 自适应卡尔曼滤波与PSO-GA-BP算法的机器人误差补偿[J]. 中国机械工程, 2023, 34(20): 2456-2465. |
[14] | 籍永建, 姚利诚, . 机器人铣削加工颤振自适应识别方法研究[J]. 中国机械工程, 2023, 34(18): 2165-2176. |
[15] | 王伟, 韦浪, 刘富盛, 王国顺. 仿生六足机器人柔顺腿研究[J]. 中国机械工程, 2023, 34(17): 2089-2094. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||