[1]袁广超,鲍劲松,郑小虎,等. 基于CNC实时监测数据驱动方法的钛合金高速铣削刀具寿命预测[J]. 中国机械工程,2018, 29(4):457-462.
YUAN Guangchao, BAO Jingsong, ZHENG Xiaohu, et al. Tool Life Prediction in Titanium High Speed Milling Processes Based on CNC Real Time Monitoring Data Driven[J]. China Mechanical Engineering, 2018, 29(4):457-462.
[2]ZHU Weiguo, ZHUANG Jichao, GUO Baosu, et al. An Optimized Convolutional Neural Network for Chatter Detection in the Milling of Thin-walled Parts[J]. The International Journal of Advanced Ma-nufacturing Technology,2020, 106(9/10):3881-3895.
[3]石文天,韩冬,刘玉德,等. 超低温微铣削芳纶纤维复合材料表面质量[J]. 中国机械工程,2019, 30(9):1056-1064.
SHI Wentian, HAN Dong, LIU Yude, et al. Surface Quality of Aramid Fiber Composites with Ultra-low Temperature and Micro-milling[J]. China Mechanical Engineering, 2019, 30(9):1056-1064.
[4]XIE Zhengyou, LU Yong, LI Jianguang. Development and Testing of an Integrated Smart Tool Holder for Four-component Cutting Force Measurement[J]. Mechanical Systems and Signal Processing,2017, 93:225-240.
[5]RIZAL M, GHANI J A, NUAWI M Z, et al. An Embedded Multi-sensor System on the Rotating Dynamometer for Real-time Condition Monitoring in Milling[J]. The International Journal of Advanced Manufacturing Technology,2018, 95(1/4):811-823.
[6]DONOHO D L. Compressed Sensing[J]. IEEE Transactions on Information Theory,2006, 52(4):1289-1306.
[7]CANDES E J, WAKIN M B. An Introduction to Compressive Sampling[J]. IEEE Signal Processing Magazine,2008, 25(2):21-30.
[8]王强,张培林,王怀光,等. 压缩感知中测量矩阵构造综述[J]. 计算机应用. 2017, 37(1):188-196.
WANG Qiang, ZHANG Peilin, WANG Huai-guang, et al.Survey on Construction of Measurement Matrices in Compressive Sensing[J]. Journal of Computer Applications, 2017, 37(1):188-196.
[9]郭俊锋,石斌,魏兴春,等. 基于K-SVD字典学习算法的稀疏表示振动信号压缩测量重构方法[J]. 机械工程学报, 2018, 54(7):97-106.
GUO Junfeng, SHI Bin, WEI Xingchun, et al.A Method of Reconstruction of Compressed Measuring for Mechanical Vibration Signals Based on K-SVD Dictionary-training Algorithm Sparse Representation[J]. Journal of Mechanical Engineering, 2018, 54(7):97-106.
[10]马如远,刘继忠,金明亮,等. 基于Bandelet稀疏的移动机器人环境视觉纹理图像的压缩传感与重构[J]. 中国机械工程,2014, 25(11):1535-1540.
MA Ruyuan, LIU Jizhong, JIN Mingliang, et al. Bandelet Sparsity Based Compressive Sensing and Reconstruction of Texture Images for Mobile Robot Environmental Visions[J]. China Mechanical Engineering, 2014, 25(11):1535-1540.
[11]孟宗,李晶,龙海峰,等. 基于压缩信息特征提取的滚动轴承故障诊断方法[J]. 中国机械工程, 2017, 28(7):806-812.
MENG Zong, LI Jing, LONG Haifeng, et al. Fault Diagnosis Method for Rolling Bearings Based on Compression Information Feature Extractions[J]. China Mechanical Engineering, 2017, 28(7):806-812.
[12]DEVORE R A. Deterministic Constructions of Compressed Sensing Matrices[J]. Journal of Complexity, 2007, 23(4):918-925.
[13]孟庆微,黄建国,何成兵,等. 采用时域测量矩阵的压缩感知稀疏信道估计方法[J]. 西安交通大学学报,2012, 46(8):94-99.
MENG Qingwei, HUANG Jianguo, HE Chengbing, et al. An Compressed Sensing Estimation Method for Sparse Channels Using Time Domain Measurement Matrix[J]. Journal of Xian Jiaotong University, 2012, 46(8):94-99.
[14]刘记红,徐少坤,高勋章,等. 基于随机卷积的压缩感知雷达成像[J]. 系统工程与电子技术,2011, 33(7):1485-1490.
LIU Jihong, XIU Shaokun, GAO Xunzhang, et al.Compressed Sensing Radar Imaging Based on Random Convolution[J]. Journal of Systems Engineering and Electronics, 2011, 33(7):1485-1490.
[15]郭俊锋,党姜婷. 基于最优型确定性测量矩阵的振动信号数据压缩采集方法[J]. 振动与冲击,2019, 38(7):195-203.
GUO Junfeng, DANG Jiangting. Data Compression Collecting Method for Vibration Signals Based on Optimal Deterministic Measurement Matrix[J]. Journal of Vibration and Shock, 2019, 38(7):195-203.
[16]TROPP J A, GILBERT A C. Signal Recovery from Random Measurements via Orthogonal Ma-tching Pursuit[J]. IEEE Transactions on Information Theory,2007, 53(12):4655-4666.
[17]NEEDELL D, TROPP J A. CoSaMP:Iterative Signal Recovery from Incomplete and Inaccurate Samples[J]. Applied & Computational Harmonic Analysis,2008, 26(3):301-321.
[18]WU Fenghe, LI Yuanxiang, GUO Baosu, et al. The Design of Force Measuring Tool Holder System Based on Wireless Transmission[J]. IEEE Access,2018, 6:38556-38566.
|