中国机械工程 ›› 2021, Vol. 32 ›› Issue (19): 2269-2287.DOI: 10.3969/j.issn.1004-132X.2021.19.001
丰飞1,2;杨海涛2;唐丽娜3;丁汉1,2,4
出版日期:
2021-10-10
发布日期:
2021-11-04
作者简介:
丰飞,男,1982年生,高级工程师、集萃青年研究员。研究方向为特种机器人及机器人机构学。发表论文15篇。E-mail:fengtang999@163.com。
基金资助:
FENG Fei1,2;YANG Haitao2;TANG Lina3;DING Han1,2,4
Online:
2021-10-10
Published:
2021-11-04
摘要: 基于典型大尺度构件的移动机器人化加工需求背景与发展现状的总结与分析,提出了大工作空间、高刚度、高精度、重载、轻量化、高动态响应、大负载自重比的大尺度构件加工机器人本体的基本性能要求。围绕上述基本性能要求,从机器人本体构型与机构优化设计,高性能加工机器人专用控制器与加工机器人操作系统开发,加工机器人运动学参数动态标定及位姿误差实时预测与动态补偿,刚柔耦合多体动力学建模,机器人动力学控制及主动振动控制等方面,论证了重载高精度加工机器人本体的优化设计及机器人性能提升方法,并完成了大尺度构件加工机器人本体构型与机构的概念设计。大尺度构件加工机器人本体的创新设计与研制,可为航空航天等领域的典型大尺度构件提供高性能的超柔性机器人化加工系统,并有助于推动国产工业机器人关键性能的提升。
中图分类号:
丰飞, 杨海涛, 唐丽娜, 丁汉, . 大尺度构件重载高精加工机器人本体设计与性能提升关键技术[J]. 中国机械工程, 2021, 32(19): 2269-2287.
FENG Fei, YANG Haitao, TANG Lina, DING Han, . Key Technologies of Design and Performance Improvement of Heavy-duty and High Precision Machining Robot Bodies for Large-scale Components[J]. China Mechanical Engineering, 2021, 32(19): 2269-2287.
[1]JONATHAN R, KATIE A, EDWARD F, et al. China’s Industrial and Military Robotics Development[R]. Vienna:Center for Intelligence Research and Analysis(CIRA) of the Defense Group Incorporated(DGI), 2016. [2]MLLER C, SCHMIDT H C, KOCH P, et al. Machining of Large Scaled CFRP-parts with Mobile CNC-based Robotic System in Aerospace Industry[J]. Procedia Manufacturing, 2017, 14:17-29. [3]ISAK K. The Role of Industrial Robots in the Development of Automotive Industry in China[J]. International Journal of Engineering Works, 2016, 3(12):92-97. [4]International Federation of Robotics(IFR). Executive Summary World Robotics 2019 Industrial Robots[R]. Frankfurt:International Federation of Robotics(IFR), 2019. [5]OLIVIER L, MATHIEU R, CYRIL M, et al. Mobile Machines for the Machining of Large Dimension Parts[C]∥15th International Conference on High Speed Machining. Prague, 2019:3142-3147. [6]SUSEMIHL H, BRILLINGER C, SVEN P S, et al. Referencing Strategies for High Accuracy Machining of Large Aircraft Components with Mobile Robotic Systems[R]. Warrendale:SAE International, 2017. [7]SUSEMIHL H, MOELLER C, KOTHE S, et al. High Accuracy Mobile Robotic System for Machining of Large Aircraft Components[J]. SAE International Journal of Aerospace, 2016, 9(2):231-238. [8]SEONG H K, EUNSEOK N, TAE I H, et al. Robotic Machining:a Review of Recent Progress[J]. International Journal of Precision Engineering & Manufacturing, 2019, 20:1629-1642. [9]JI Wei, WANG Lihui. Industrial Robotic Machining:a Review[J]. The International Journal of Advanced Manufacturing Technology, 2019, 103:1239-1255. [10]ALEXANDER V, ANNA V, SHREVES M, et al. Robots in Machining[J]. CIRP Annals:Manufacturing Technology, 2019, 68:799-822. [11]CHRISTOS D, PANAGIOTIS S, GEORGE C. Machining with Robots:a Critical Review[C]∥Proceedings of DET2011 7th International Conference on Digital Enterprise Technology. Athens, 2011:1-8. [12]IVAN I S, MIGUEL A S, ARES E. Overview of the State of Robotic Machining:Current Situation and Future potential[J]. Procedia Engineering, 2015, 132:911-917. [13]PUZIK A, MEYER C, VERL A. Industrial Robots for Machining Processes in Combination with a 3D-piezo-compensation-mechanism[C]∥CIRP ICME 2010, the 7th CIRP International Conference on Intelligent Computation in Manufacturing Engineering. Innovative and Cognitive Production Technology and Systems. Paris, 2010:1-5. [14]Fraunhofer Institute for Manufacturing Technology and Advanced Materials-IFAM. CNC Machining Robot[A/OL]. Wiener Strasse, Bremen, Germany:Fraunhofer Institute for Manufacturing Technology and Advanced Materials, 2018.[2021-07-30]. https:∥www. ifam. fraunhofer. de/content/dam/ifam/en/documents/Adhesive_Bonding_Surfaces/FFM/CNC_Machining_Robot_fraunhofer_ifam. pdf. [15]BURGHARDT A, SZYBICKI D, KURC K, et al. Experimental Study of Inconel 718 Surface Treatment by Edge Robotic Deburring with Force Control[J]. Strength of Materials, 2017, 49(4):594-604. [16]XU P, LI B, CHEUNG C F, et al. Stiffness Modeling and Optimization of a 3-DOF Parallel Robot in a Serial-parallel Polishing Machine[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(4):497-507. [17]WU Guanglei, WANG Delun, DONG Huimin. Off-line Programmed Error Compensation of an Industrial Robot in Ship Hull Welding[C]∥10th International Conference on Intelligent Robotics and Applications. Wuhan, 2017:135-146. [18]骆海涛, 周维佳, 刘玉旺, 等. 大型航天搅拌摩擦焊机器人动态仿真分析与优化设计[M]. 北京:科学出版社, 2018:1-20. LUO Haitao, ZHOU Weijia, LIU Yuwang, et al. Dynamic Simulation Analysis and Optimal Design of the Large Aerospace Friction Stir Welding Robot[M]. Beijing:Science Press, 2018:1-20. [19]DIRK B, ROBERT A, SEBASTIAN S, et al. Wet Abrasive Jet Machining to Prepare and Design the Cutting-edge Micro Shape[J]. Procedia CIRP, 2016, 45:195-198. [20]CHEN Dongdong, YUAN Peijiang, WANG Tianmiao, et al. A Compensation Method for Enhancing Aviation Drilling Robot Accuracy Based on Co-Kriging[J]. International Journal of Precision Engineering and Manufacturing, 2018, 19(8):1133-1142. [21]GAO Yuhao, WU Dan, DONG Yunfei, et al. The Method of Aiming towards the Normal Direction for Robotic Drilling[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(6):787-794. [22]CHRISTIAN M, HANS C S, PHILIP K, et al. Machining of Large Scaled CFRP-parts with Mobile CNC-based Robotic System in Aerospace Industry[J]. Procedia Manufacturing, 2017, 14:17-29. [23]ZHANG Hui, WANG Jianjun, GAN Zhongxue, et al. Machining with Flexible Manipulator:Toward Improving Robotic Machining Performance[C]∥Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics. Monterey, 2005:1127-1132. [24]MARTON L, LANTOS B. Friction and Backlash Measurement and Identification Method for Robotic Arms[C]∥Proceedings of International Conference on Advanced Robotics and Automation. Kobe, 2009:1-6. [25]GONG Chunhe, YUAN Jingxia, NI Jun. Nongeometric Error Identification and Compensation for Robotic System by Inverse Calibration[J]. International Journal of Machine Tools & Manufacture, 2000, 40:2119-2137. [26]YE S H, WANG Y, REN Y J, et al. Robot Calibration Using Iteration and Differential Kinematics[J]. Journal of Physics Conference Series, 2006, 48:1-6. [27]HA I C. Kinematic Parameter Calibration Method for Industrial Robot Manipulator Using the Relative Position[J]. Journal of Mechanical Science and Technology, 2008, 22(6):1084-1090. [28]WU Liao, YANG Xiangdong, CHEN Ken. A Minimal POE Based Model for Robotic Kinematic Calibration with Only Position Measurements[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12(2):758-763. [29]CHO Y, KIM M, CHEONG J, et al. Simultaneous Identification of Kinematic Screw and Joint Compliance of Elastic Robot Manipulators Using Deflected Circular Trajectories[C]∥2017 IEEE International Conference on Advanced Intelligent Mechatronics(AIM). Munich, 2017:382-387. [30]ZHOU J, NGUYEN H N, KANG H J. Simultaneous Identification of Joint Compliance and Kinematic Parameters of Industrial Robots[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(11):2257-2264. [31]NUBIOL A, BONEY I A. Absolute Calibration of an ABB IRB 1600 Robot Using a Laser Tracker[J]. Robotics and Computer-Integrated Manufacturing, 2013, 29(1):236-245. [32]SALISBURY J K. Active Stiffness Control of a Manipulator in Cartesian Coordinates[C]∥Proceedings of the 19th IEEE Conference on Decision and Control. Albuquerque, 1980:95-100. [33]KLIMCHIK A, PASHKEVICH A. Design of Calibration Experiments for Identification of Manipulator Elasto-static Parameters[J]. Journal of Mechanics Engineering and Automation, 2012, 2:531-542. [34]KLIMCHIK A, PASHKEVICH A, CHABLAT D. CAD-based Approach for Identification of Elasto-static Parameters of Robotic Manipulators[J]. Finite Elements in Analysis and Design, 2013, 75:19-30. [35]GOSSELIN C. Stiffness Mapping for Parallel Manipulators[J]. IEEE Transactions on Robotics and Automation, 1990, 6(3):377-382. [36]CHEN S F. The 6×6 Stiffness Formulation and Transformation of Serial Manipulators via the CCT Theory[C]∥Proceedings of 2003 IEEE International Conference on Robotics and Automation. Taipei, 2003:4042-4047. [37]MARIE S, COURTEILLE E, MAURINE P. Elasto-geometrical Modeling and Calibration of Robot Manipulators:Application to Machining and Forming Applications[J]. Mechanism and Machine Theory, 2013, 69:13-43. [38]OLABI A, DAMAK M, BEAREE R, et al. Improving the Accuracy of Industrial Robots by Offline Compensation of Joints Errors[C]∥2012 IEEE International Conference on Industrial Technology. Athens, 2012:492-497. [39]DUMAS C, CARO S, GARNIER S, et al. Joint Stiffness Identification of Six-revolute Industrial Serial Robots[J]. Robotics and Computer-Integrated Manufacturing, 2011, 27(4):881-888. [40]KLIMCHIK A, BONDARENKO D, PASHKEVICH A, et al. Compliance Error Compensation in Robotic-based Milling[C]∥Proceedings of 11th International Conference on Informatics in Control, Automation and Robotics. Vienna, 2014:197-216. [41]PAN Zengxi, ZHANG Hui. Improving Robotic Machining Accuracy by Real-time Compensation[C]∥Proceedings of ICROS-SICE International Joint Conference. Fukuoka, 2009:4289-4294. [42]ZAEH M F, ROESCH O. Improvement of the Machining Accuracy of Milling Robots[J]. Production Engineering, 2014, 8(6):737-744. [43]SPONG M W. Modeling and Control of Elastic Joint Robots[J]. Journal of Dynamics Systems, Measurement, and Control, 1987, 109(1):310-319. [44]READMAN M C, BELANGER P R. Analysis and Control of a Flexible Joint Robot[C]∥Proceedings of the 29th Conference on Decision and Control. Munich, 1990:2551-2559. [45]MOBERG S, WERNHOLT E, HANSSEN S, et al. Modeling and Parameter Estimation of Robot Manipulators Using Extended Flexible Joint Models[J]. Journal of Dynamic Systems Measurement and Control, 2014, 136(3):132-145. [46]谢辉, 刘业超, 谢宗武. 四自由度柔性关节机器臂残余振动的输入整形控制[J]. 机械与电子, 2009(10), 32-34. XIE Hui, LIU Yechao, XIE Zongwu. Input Shaping Technique Applied to Vibration Reduction of a Four-DOF Flexible Joint Robot Arm[J]. Machinery & Electronics, 2009(10):32-34. [47]RHIM S, BOOK W J. Adaptive Time-delay Command Shaping Filter for Flexible Manipulator Control[J]. IEEE/ASME Transactions on Mechatronics, 2004, 9(4):619-626. [48]SPONG M W, KHORASANI K, KOKOTOVIC P V. An Integral Manifold Approach to the Feedback Control of Flexible Joint Robots[J]. IEEE Journal on Robotics & Automation, 1987, 3(4):291-300. [49]VARDEGRIFT M W, LEWIS F L, ZHU S Q. Flexible Link Robot Arm Control by a Feedback Linearization Singular Perturbation Approach[J]. Journal of Robotic Systems, 1994, 11(7):591-603. [50]KOBAYASHI N, INOUE K. Vibration Suppression Control of Flexible Robot Arm with CMS Modeling and Output Feedback Sliding Mode Controller[C]∥Proceedings of the IEEE 1999 International Conference on Control Applications. Kohala Coast, 1999:297-302. [51]CHAOUI H, GUEAIEB W, YAGOUB M C E, et al. Hybrid Neural Fuzzy Sliding Mode Control of Flexible-joint Manipulators with Unknown Dynamics[C]∥ IECON 2006-32nd Annual Conference on IEEE Industrial Electronics. Paris, 2006:4082-4087. [52]GOLDENBERG A A, RAKHSHA F. Feedforward Control of a Single-link Flexible Robot[J]. Mechanism and Machine Theory, 1986, 21(4):325-335. [53]SAKAWA Y, MATSUNO F, FUKUSHIMA S. Modeling and Feedback Control of Flexible Arm[J]. Journal of Robotics System, 1985, 2(4):453-472. [54]RAVICHANDRAN T, PANG G, WANG D. Robust H-Infinity Control of a Single Flexible Link[J]. Control Theory and Advanced Technology, 1993, 9(4):887-908. [55]SCHNEIDER U, DRUST M, DIAZ P J, et al. A Position Control of an Industrial Robot Using an Optical Measurement System for Machining Purposes[C]∥Proceedings of the 11th International Conference on Manufacturing Research(ICMR2013). Cranfield, 2013:307-312. [56]MLLER C, SCHMIDT H C, SHAH N H, et al. Enhanced Absolute Accuracy of an Industrial Milling Robot Using Stereo Camera System[J]. Procedia Technology, 2016, 26:389-398. [57]MLLER C, SCHMIDT H C, KOCH P, et al. Real Time Pose Control of an Industrial Robotic System for Machining of Large Scale Components in Aerospace Industry Using Laser Tracker System[J]. SAE International Journal of Aerospace, 2017, 10(2):100-108 [58]SUSEMIHL H, MLLER C, KOTHE S, et al. High Accuracy Mobile Robotic System for Machining of Large Aircraft Components[J]. SAE International Journal of Aerospace, 2016, 9(2):231-238. [59]DROLL S. Real Time Path Correction of Industrial Robots with Direct End-effector Feedback from a Laser Tracker[J]. SAE International Journal of Aerospace, 2014, 7(2):222-228. [60]陶波, 赵兴炜, 李汝鹏, 等. 机器人测量-操作-加工一体化技术研究及其应用[J]. 中国机械工程, 2020, 31(1):49-56. TAO Bo, ZHAO Xingwei, LI Rupeng, et al. Research on Robotic Measurement-Operation-Machining Technology and Its Application [J]. China Mechanical Engineering, 2020, 31(1):49-56. [61]CHEN Fan, ZHAO Huan, LI Dingwei, et al. Contact Force Control and Vibration Suppression in Robotic Polishing with a Smart End Effector[J]. Robotics and Computer-Integrated Manufacturing, 2019, 57:391-403. [62]陶波, 赵兴炜, 丁汉. 大型复杂构件机器人移动加工技术研究[J]. 中国科学:技术科学, 2018, 48(12):1302-1312. TAO Bo, ZHAO Xingwei, DING Han. Study on Robotic Mobile Machining Techniques for Large Complex Components[J]. Scientia Sinica Technologica, 2018, 48(12):1302-1312. [63]丰飞, 严思杰, 丁汉. 大型风电叶片多机器人协同磨抛系统的设计与研究[J]. 机器人技术与应用, 2018(5):16-24. FENG Fei, YAN Sijie, DING Han. The Design and Study of the Grinding and Polishing System Based on Multi-robot Collaboration for Wind Turbine Blade [J]. Robot Technique and Application, 2018(5):16-24. [64]TAO Bo, ZHAO Xingwei, DING Han. Mobile-robotic Machining for Large Complex Components:a Review Study[J]. Science China Technological Sciences, 2019, 62:1388-1400. [65]LIN Yang, ZHAO Huan, DING Han. Posture Optimization Methodology of 6R Industrial Robots for Machining Using Performance Evaluation Indexes[J]. Robotics and Computer-Integrated Manufacturing, 2017, 48:59-72. [66]LI Xiangfei, ZHAO Huan, ZHAO Xin, et al. Contouring Compensation Control Based on High Accuracy Contour Error Estimation for Multi-axis Motion Systems[J]. International Journal of Advanced Manufacturing Technology, 2017, 93(5/8):1-11. [67]喻曦. 机器人加工轨迹高精度控制研究[D]. 武汉:华中科技大学, 2019. YU Xi. Research on High Precision Control of Trajectory for Robotic Machining[D]. Wuhan:Huazhong University of Science and Technology, 2019. [68]GUO Yingjie, WANG Guifeng, KE Yinglin. A Robotic Boring System for Intersection Holes in Aircraft Assembly[J]. Industrial Robot:an International Journal, 2018, 45(3):328-336. [69]WANG Guifeng, DONG Huiyue, GUO Yingjie, et al. Early Chatter Identification of Robotic Boring Process Using Measured Force of Dynamometer[J]. The International Journal of Advanced Manufacturing Technology, 2017, 94(1/4):1243-1252. [70]董辉跃, 孙强, 郭英杰, 等. 机器人孔口倒角加工振动及抑制[J]. 浙江大学学报(工学版), 2018, 52(12):2243-2252. DONG Huiyue, SUN Qiang, GUO Yingjie, et al. Vibration Analysis and Suppression in Robotic Hole Chamfering Process [J]. Journal of Zhejiang University(Engineering Science), 2018, 52(12):2243-2252. [71]陈东东. AGV式移动机器人在飞机装配中二次制孔位置精度研究[D]. 杭州:浙江大学, 2017. CHEN Dongdong. Research on Reproducible Hole Position Accuracy of AGV Mobile Robotin Aircraft Assembly[D]. Hangzhou:Zhejiang University, 2017. [72]张云志, 蒋倩. 大飞机翼盒机器人制孔系统集成技术研究[J]. 航空制造技术, 2018, 61(7):16-23. ZHANG Yunzhi, JIANG Qian. Research on Integration Technology of Wing Box Robot Drilling System for Large Aircraft [J]. Aeronautical Manufacturing Technology, 2018, 61(7):16-23. [73]向勇, 田威, 洪鹏, 等. 双机器人钻铆系统协同控制与基坐标系标定技术[J]. 航空制造技术, 2016(16):87-92. XIANG Yong, TIAN Wei, HONG Peng, et al. Cooperative Control and Basing Coordinate System Calibration Technology of Double Robot Drilling and Riveting System[J]. Aeronautical Manufacturing Technology, 2016(16):87-92. [74]刘思明. 移动机器人铣削系统控制技术[D]. 南京:南京航空航天大学, 2019. LIU Siming. Research on Control Technology of Mobile Robotic Milling System [D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2019. [75]MENG L, TIAN H, MEI J, et al. Dynamic Formulation and Performance Comparison of the 3-DOF Modules of Two Reconfigurable PKM—the Tricept and the TriVariant[J]. Journal of Mechanical Design, 2005, 127(6):1129-1136. [76]游玮. 双平行四边形高速重载搬运机器人动态设计与控制研究[D]. 哈尔滨:哈尔滨工业大学, 2011. YOU Wei. Dynamic Design and Control of High Speed and Heavy Duty Handling Robot with Dou-ble Parallelgram[D]. Harbin:Harbin Institute of Technology, 2011. [77]肖永强. 高速重载机械臂优化设计与轨迹规划及振动抑制方法研究[D]. 哈尔滨:哈尔滨工业大学, 2012. XIAO Yongqiang. Optimization Design, Trajectory Planning and Vibration Suppression for High-speed and Heavy-load Manipulator Arm [D]. Harbin:Harbin Institute of Technology, 2012. |
[1] | 姜吉光, 侯爵, 苏成志, 巴麒蛟, 田爱鑫, 徐明宇. 面向物理约束的机器人运动学标定最优位姿集规划方法研究[J]. 中国机械工程, 2024, 35(03): 472-480. |
[2] | 倪华康, 杨泽源, 杨一帆, 陈新渡, 严思杰, 丁汉. 考虑基坐标系误差的机器人运动学标定方法[J]. 中国机械工程, 2022, 33(06): 647-655. |
[3] | 李法民, 郑天江, 沈雯钧, 王会肖, 方灶军, 梁冬泰. 绳驱动连续体机器人标定方法[J]. 中国机械工程, 2022, 33(02): 202-208. |
[4] | 甄冬, 李堃, 刘晓昂, 张佳琪, . 非线性能量阱对汽车车身垂向振动的抑制效果[J]. 中国机械工程, 2022, 33(01): 24-33. |
[5] | 张恩政, 唐宁敏, 陈刚, 刘翠苹. 基于改进IGG3权函数距离误差模型的工业机器人标定[J]. 中国机械工程, 2021, 32(13): 1539-1546. |
[6] | 郭金生1;王峰1;岳程斐2. 基于商用现货的高分辨卫星微振动抑制系统设计[J]. 中国机械工程, 2020, 31(20): 2395-2042,2411. |
[7] | 李永泉1,2;王皓辰2, 3;张阳1,2;张岩1,2;张立杰2, 3. 一种基于手眼视觉的并联机器人标定方法[J]. 中国机械工程, 2020, 31(06): 722-730,755. |
[8] | 李松1,2;杨诗怡1,2;张峰峰1,2;孙立宁1,2. 基于遗传算法与最小最大优化方法的六自由度放疗床参数辨识方法[J]. 中国机械工程, 2018, 29(01): 57-62. |
[9] | 凌启辉;赵前程;王宪;康煜华. 热连轧机工作辊水平-垂直非线性振动特性及抑制[J]. 中国机械工程, 2017, 28(16): 1943-1950,2007. |
[10] | 李玉昆, 李永泉, 佘亚中, 张立杰, . 3-UPS/S并联稳定平台满载工况误差分析与运动学标定[J]. 中国机械工程, 2017, 28(08): 958-965. |
[11] | 隆志力, 禹新路, 朱超. 基于速度阻尼的位置/压力切换控制模型[J]. 中国机械工程, 2014, 25(14): 1946-1950,1955. |
[12] | 沈峘, 林棻. 汽车S-AKF估计与PID控制的闭环系统仿真[J]. 中国机械工程, 2014, 25(1): 130-133,137. |
[13] | 刘延斌, 郭志佳, 韩建海. 并联机构驱动奇异的分层递阶滑模控制方法[J]. 中国机械工程, 2012, 23(8): 928-934. |
[14] | 李光, 刘领化. 柔性负载电液位置伺服系统的轨迹规划[J]. 中国机械工程, 2012, 23(16): 1943-1946. |
[15] | 史伟民, 杨亮亮, 陶维, 武传宇. 基于脉冲整形滤波的轨迹涂胶残余振动抑制研究 [J]. 中国机械工程, 2011, 22(7): 860-863. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||