[1]MOURA E P D, JUNIOR F E D A M, DAMASCENO F F R, et al. Classification of Imbalance Levels in a Scaled Wind Turbine through Detrended Fluctuation Analysis of Vibration Signals [J]. Renewable Energy, 2016, 96:993-1002.
[2]唐贵基, 李楠楠, 王晓龙.结合改进奇异谱分解和奇异值分解的齿轮故障特征提取方法[J]. 中国机械工程, 2020, 31(24):2988-2996.
TANG Guiji, LI Nannan, WANG Xiaolong. Fault Feature Extraction Method for Gear Based on ISSD and SVD[J]. China Mechanical Engineering, 2020, 31(24):2988-2996.
[3]郭远晶, 魏燕定, 金晓航, 等. 时频谱相似性度量的故障特征提取方法 [J]. 振动与冲击, 2020, 39(12):70-77.
GUO Jingyuan, WEI Yanding, JIN Xiaohang, et al. Fault Feature Extraction From Time-frequency Spectrum by Using Similarity Measurement [J]. Journal of Vibration and Shock, 2020, 39(12):70-77.
[4]HINTON G, OSINDERO S, TEH Y. A Fast Learning Algorithm for Deep Belief Nets [J]. Neural Computation, 2006, 18(7):1527-1554.
[5]罗会兰, 陈鸿坤. 基于深度学习的目标检测研究综述[J]. 电子学报, 2020, 48(6):1230-1239.
LUO Huilan, CHEN Hongkun. Survey of Object Detection Based on Deep Learning [J]. Acta Electronica Sinica, 2020, 48(6):1230-1239.
[6]顾迎捷, 桂小林, 李德福, 等. 基于神经网络的机器阅读理解综述 [J]. 软件学报, 2020, 31(7):2095-2126.
GU Yingjie, GUI Xiaolin, LI Defu, et al. Survey of Machine Reading Comprehension Based on Neural Network[J]. Journal of Software, 2020, 31(7):2095-2126.
[7]杜娟, 刘志刚, 宋考平, 等. 基于卷积神经网络的抽油机故障诊断 [J]. 电子科技大学学报, 2020, 49(5):751-757.
DU Juan, LIU Zhigang, SONG Kaoping, et al. Fault Diagnosis of Pumping Unit Based on Convolutional Neural Network [J]. Journal of University of Electronic Science and Technology of China, 2020, 49(5):751-757.
[8]JIANG Guoqian, HE Haibo, YAN Jun, et al. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox [J]. IEEE Transactions on Industrial Electronics, 2019, 66(4):3196-3207.
[9]周奇才, 沈鹤鸿, 赵炯, 等. 基于改进堆叠式循环神经网络的轴承故障诊断[J]. 同济大学学报(自然科学版), 2019, 47(10):1500-1507.
ZHOU Qicai, SHEN Hehong, ZHAO Jiong, et al. Bearing Fault Diagnosis Based on Improved Stacked Recurrent Neural Network[J]. Journal of Tongji University(Natural Science), 2019, 47(10):1500-1507.
[10]池永为, 杨世锡, 焦卫东. 基于LSTM-RNN的滚动轴承故障多标签分类方法[J]. 振动.测试与诊断, 2020, 40(3):563-571.
CHI Yongwei, YANG Shixi, JIAO Weidong. A Multi-label Fault Classification Method for Rolling Bearing Based on LSTM-RNN [J]. Journal of Vibration, Measurement & Diagnosis, 2020, 40(3):563-571.
[11]陈保家, 刘浩涛, 徐超, 等. 深度置信网络在齿轮故障诊断中的应用[J]. 中国机械工程, 2019, 30(2):205-211.
CHEN Baojia, LIU Haotao, XU Chao, et al. Gear Fault Diagnosis Based on DBNS[J]. China Mechanical Engineering, 2019, 30(2):205-211.
[12]闫丽萍, 董学智, 张永军, 等. 基于深度置信网络的燃气轮机气路故障诊断方法 [J]. 工程热物理学报, 2020, 41(4):840-844.
YAN Liping, DONG Xuezhi, ZHANG Yongjun, et al. A Gas Path Fault Diagnostic Method of Gas Turbine Based on Deep Belief Network[J]. Journal of Engineering Thermophysics, 2020, 41(4):840-844.
[13]侯文擎, 叶鸣, 李巍华. 基于改进堆叠降噪自编码的滚动轴承故障分类 [J]. 机械工程学报, 2018, 54(7):87-96.
HOU Wenqing, YE Ming, LI Weihua. Rolling Ele-ment Bearing Fault Classification Using Improved Stacked De-noising Auto-encoders [J]. Journal of Mechanical Engineering, 2018, 54(7):87-96.
[14]洪骥宇, 王华伟, 车畅畅, 等. 改进降噪自编码的航空发动机气路故障诊断 [J]. 振动.测试与诊断, 2019, 39(3):603-610.
HONG Jiyu, WANG Huawei, CHE Changchang, et al. Gas Path Fault Diagnosis for Aero-engine Based on Improved Denoising Autoencoder [J]. Journal of Vibration, Measurement & Diagnosis, 2019, 39(3):603-610.
[15]张西宁, 郭清林, 刘书语. 深度学习技术及其故障诊断应用分析与展望 [J]. 西安交通大学学报, 2020, 54(12):1-13.
ZHANG Xining, GUO Qinglin, LIU Shuyu. Analysis and Prospect of Deep Learning Technology and Its Fault Diagnosis Application [J]. Journal of Xi'an Jiaotong University, 2020, 54(12):1-13.
[16]雷亚国, 贾峰, 周昕, 等. 基于深度学习理论的机械装备大数据健康监测方法 [J]. 机械工程学报, 2015, 51(21):49-56.
LEI Yaoguo, JIA Feng, ZHOU Xin, et al. A Deep Learning-based Method for Machinery Health Monitoring with Big Data [J]. Journal of Mechanical Engineering, 2015, 51(21):49-56.
[17]LI X, LI X, MA H. Deep Representation Clustering-Based Fault Diagnosis Method with Unsupervised Data Applied to Rotating Machinery [J]. Mechanical Systems and Signal Processing, 2020, 143:106825.
[18]康守强, 周月, 王玉静, 等. 基于改进SAE和双向LSTM的滚动轴承RUL预测方法[J/OL]. 自动化学报:1-11[2020-10-14]. https:∥doi.org/10.16383/j.aas. 190796.
KANG Shouqiang, ZHOU Yue, WANG Yujing, et al. RUL Prediction Method ofA Rolling Bearing Based on Improved SAE and Bi-LSTM[J/OL]. Acta Automatica Sinica:1-11[2020-10-14]. https:∥doi.org/10.16383/j.aas. 190796.
[19]张西宁, 向宙, 夏心锐, 等. 堆叠自编码网络性能优化及其在滚动轴承故障诊断中的应用 [J]. 西安交通大学学报, 2018, 52(10):49-56.
ZHANG Xining, XIANG Zhou, XIA Xinrui, et al. Optimization of Stacking Auto-encoder with Applications in Bearing Fault Diagnosis [J]. Journal of Xian Jiaotong University, 2018, 52(10):49-56.
[20]MASS A L, HANNUN A Y, NG A Y. Rectifier Nonlinearities Improve Neural Network Acoustic Models[C]∥ International Conference on Machine Learning. Miami, 2013:1152-1160.
[21]LOPARO K A. Case Western Reserve University Bearing Data Center[DB/OL]. http:∥csegroups.case.edu/ bearingdatacenter/pages/download-data-file.
[22]VAN DERMAATEN L, HINTON G. Visualizing Data Using t-SNE [J]. Journal of Machine Learning Research, 2008, 9:2579-2605.
[23]杨平, 苏燕辰, 张振. 基于卷积胶囊网络的滚动轴承故障诊断研究 [J]. 振动与冲击, 2020, 39(4):55-62.
YANG Ping, SU Yanchen, ZHANG Zheng. A Study on Rolling Bearing Fault Diagnosis Based on Convolution Capsule Network [J]. Journal of Vibration and Shock, 2020, 39(4):55-62.
|