[1]李亚, 黄亦翔, 赵路杰,等. 基于t分布邻域嵌入与XGBoost的刀具多工况磨损评估[J]. 机械工程学报, 2020, 56(1):132-140.
LI Ya, HUANG Yixiang, ZHAO Lujie, et al. Multi-condition Wear Evaluation of Tool Based on T-SNE and XGBoost[J]. Journal of Mechanical Engineering, 2020,56(1):132-140.
[2]刘建春, 江骏杰, 邹朝圣. 基于机器视觉的立铣刀磨损检测方法研究[J]. 制造技术与机床, 2020(1):136-140.
LIU Jianchun, JIANG Junjie, ZOU Chaosheng. Research on Wear Detection Method of Endmill Based on Machine Vision [J]. Manufacturing Technology & Machine Tool, 2020(1):136-140.
[3]刘今越, 刘佳斌, 贾晓辉, 等. 基于面结构光投影法的刀具几何参数测量研究[J].仪器仪表学报, 2017, 38(5):1276-1284.
LIU Jinyue, LIU Jiabin, JIA Xiaohui, et al. Research on Tool Geometry Parameter Measurement Based Onsurface Structured Light Projection[J]. Chinese Journal of Scientific Instrument, 2017, 38(5):1276-1284.
[4]张吉林. 基于机器视觉的铣削刀具磨损监测技术研究[D]. 南京:南京航空航天大学,2013.
ZHANG Jilin. Research on Tool Wear Monitoring Based on Machine Vision in NC Milling Process[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2013.
[5]LI L, AN Q. An In-depth Study of Tool Wear Monitoring Technique Based on Image Segmentation and Texture Analysis [J]. Measurement, 2016, 79(2):44-52.
[6]李威霖, 傅攀, 张尔卿. 基于粒子群优化LS-SVM的车刀磨损量识别技术研究[J]. 计算机应用研究, 2014, 31(4):1094-1101.
LI Weilin, FU Pan, ZHANG Eeqin. Application of Particle Swarm Optimization-least Square Support Vector Machine in Tool Wear Monitoring[J]. Application Research of Computers, 2014, 31(4):1094-1101.
[7]刘路, 王太勇, 蒋永翔,等. 基于超球面支持向量机的刀具磨损状态识别[J]. 农业机械学报, 2011, 42(1):218-222.
LIU Lu, WANG Taiyong, JIANG Yongxiang, et al. Tool Wear State Recognition Based on Hyper-sphere Support Vector Machine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(1):218-222.
[8]孙惠斌, 牛伟龙, 王俊阳. 基于希尔伯特黄变换的刀具磨损特征提取[J]. 振动与冲击, 2015, 34(4):158-164.
SUN Huibin, NIU Weilong, WANG Junyang. Tool Wear Feature Extraction Based on Hilbert-Huang Transformation[J]. Journal of Vibration and Shock, 2015, 34(4):158-164.
[9]关山, 闫丽红, 彭昶. LS-SVM回归算法在刀具磨损量预测中的应用[J].中国机械工程,2015,26(2):217-222.
GUAN Shan, YAN Lihong, PENG Chang. Application of Regression Algorithm of LS-SVM in Tool Wear Prediction[J]. China Mechanical Engineering, 2015, 26(2):217-222.
[10]关山, 石志标, 刘炎. 基于多特征融合的刀具磨损识别方法[J]. 振动.测试与诊断,2014,34(3):576-584.
GUAN Shan, SHI Zhibiao, LIU Yan. Identification Method of Tool Wear Based on Multi-Feature Fusion[J]. Journal of Vibration Measurement & Diagnosis, 2014, 34(3):576-584.
[11]张锴锋, 袁惠群, 聂鹏. 基于广义分形维数的刀具磨损状态监测[J]. 振动与冲击, 2014, 33(1):162-164.
ZHANG Kaifeng, YUAN Huiqun, NIE Peng. Tool Wear Condition Monitoring Based on Generalized Fractal Dimensions[J]. Journal of Vibration and Shock, 2014, 33(1):162-164.
[12]王民, 刘利明, 宋铠钰, 等. 基于主轴驱动电流杂波的立铣刀复杂工况下磨损状态辨识[J/OL].计算机集成制造系统:1-15.(2020-06-23). https://kns.cnki.net/kcms/detail/11.5946.TP.20200623.1439.030.html.
WANG Min, LIU Liming, SONG Kaiyu, et al. Wear Status Identification of End Milling Cutter under Complex Cutting Conditions Based on Clutter Signal of Spindle Current[J/OL]. Computer Integrated Manufacturing Systems. (2020-06-23). https://kns.cnki.net/kcms/detail/11.5946.TP.20200623.1439.030.html.
[13]谢楠, 马飞, 段明雷,等. 基于主成分分析与C-支持向量机的刀具磨损状态监测[J]. 同济大学学报(自然科学版), 2016, 44(3):434-439.
XIE Nan, MA Fei, DUAN Minglei, et al. Tool Wear Condition Monitoring Based on Principal Component Analysis and C-Support Vector Machine[J]. Journal of Tongji University (Natural Science), 2016, 44(3):434-439.
[14]MADHUSUDANA C K, GANGADHAR N, KUMAR H, et al. Use of Discrete Wavelet Features and Support Vector Machine for Fault Diagnosis of Face Milling Tool[J]. Structural Durability and Health Monitoring, 2018, 12(2):97-113.
[15]TOBON-MEJIA D A, MEDJAHER K, ZERHOUNI N. CNC Machine Tools Wear Diagnostic and Prognostic by Using Dynamic Bayesian Networks[J]. Mechanical Systems and Signal Processing, 2012, 28:167-182.
[16]张栋梁, 莫蓉, 孙惠斌, 等. 基于混沌时序分析方法与支持向量机的刀具磨损状态识别[J]. 计算机集成制造系统,2015, 21(8):2138-2146.
ZHANG Dongliang, MO Rong, SUN Huibin, et al. Tool Wearstate Recognition Based on Chaotic Time Series Analysis and Support Vector Machine[J]. Computer Integrated Manufacturing Systems, 2015, 21(8):2138-2146.
[17]陈志强, 陈旭东, de Olivira J V, 等. 深度学习在设备故障预测与健康管理中的应用[J]. 仪器仪表学报, 2019, 40(9):206-226.
CHEN Zhiqiang, CHEN Xudong, de OLIVIRA J V, et al. Application of Deep Learning in Equipment Prognostics and Health Management[J]. Chinese Journal of Scientific Instrument, 2019, 40(9):206-226.
[18]HINTON G E, SALAKHUTDINOV R R. Reducing the Dimensionality of Data with Neural Networks[J]. Science, 2006, 313:504-507.
[19]LECUN Y, BENGIO Y, HINTON G. Deep learning[J]. Nature, 2015, 521:436-444.
[20]CAO X C, CHEN B Q, YAO B, et al. Combining Translation-invariant Wavelet Frames and Convolutional Neuralnetwork for Intelligent Tool Wear State Identification[J]. Computers in Industry, 2019, 106:71-84.
[21]DOU J, XU C, JIAO S, et al. An Unsupervised Online Monitoring Method for Tool Wear Using a Sparse Auto-encoder[J]. The International Journal of Advanced Manufacturing Technology, 2020, 106(5):2493-2507.
[22]SOUALHI M, NGUYEN K T P, MEDJAHER K. Pattern Recognition Method of Fault Diagnostics Based on a New Health Indicator for Smart Manufacturing[J]. Mechanical Systems and Signal Processing, 2020, 142:106680.
[23]CAI W, ZHANG W, HU X, et al. A Hybrid Information Model Based on Long Short-term Memory Network for Tool Condition Monitoring[J]. Journal of Intelligent Manufacturing, 2020, 31:1-14.
[24]高宏力, 许明恒, 李登万, 等. 基于PCA和动态监测模型的刀具寿命在线检测技术[J]. 仪器仪表学报, 2010, 31(11):2416-2421.
GAO Hongli, XU Mingheng, LI Dengwan, et al. On-line Tool Life Measurement Technique Based on PCA and Dynamic Monitoring Model[J]. Chinese Journal of Scientific Instrument ,2010,31(11):2416-2421.
[25]何彦,凌俊杰,王禹林,等.基于长短时记忆卷积神经网络的刀具磨损在线监测模型[J].中国机械工程,2020,31(16):1959-1967.
HE Yan, LING Junjie, WANG Yulin, et al. In-process Tool Wear Monitoring Model Based on LSTM-CNN[J]. China Mechanical Engineering, 2020, 31(16):1959-1967.
[26]卢志远, 马鹏飞, 肖江林,等. 基于机床信息的加工过程刀具磨损状态在线监测[J]. 中国机械工程, 2019, 30(2):220-225.
LU Zhiyuan, MA Pengfei, XIAO Jianglin, et al. On-line Monitoring of Tool Wear Conditions in Machining Processes Based on Machine Tool Data[J]. China Mechanical Engineering, 2019, 30(2):220-225.
|