[1]孙佳, 李学雄, 张金虎, 等. Ti-6Al-4V合金β→α相变中晶界α相形成机制的相场模拟[J]. 金属学报, 2020, 56(8):1113-1122.
SUN Jia, LI Xuexiong, ZHANG Jinhu, et al. Phase Field Simulation of the Formation Mechanism of Grain Boundary α Phase in Ti-6Al-4V Alloy β→α Phase Transition[J]. Acta Metallurgica Sinica, 2020, 56(8):1113-1122.
[2]杜子杰, 李文渊, 刘建荣, 等, CMT增材制造TC4-DT合金组织均匀性与力学性能一致性研究[J]. 金属学报,2020, 56(12):1667-1680.
DU Zijie, LI Wenyuan, LIU Jianrong, et al. Research on the Uniformity and Mechanical Properties of CMT Additive Manufacturing TC4-DT Alloy[J]. Acta Metallurgica Sinica, 2020, 56(12):1667-1680.
[3]GAO P F, FU M W, ZHAN M, et al. Deformation Behavior and Microstructure Evolution of Titanium Alloys with Lamellar Microstructure in Hot Working Process:a Review [J].Journal of Materials Science & Technology, 2020, 39:56-73.
[4]ZHANG W J, DING H, PEREIRA P H R, et al. Grain Refinement and Superplastic Flow in a Fully Lamellar Ti-6Al-4V Alloy Processed by High-pressure Torsion [J].Materials Science and Engineering:A, 2018, 732:398-405.
[5]ZHANG Z X, QU S J, FENG A H, et al. Hot Deformation Behavior of Ti-6Al-4V Alloy:Effect of Initial Microstructure [J].Journal of Alloys and Compounds, 2017, 718:170-181.
[6]SHENG J W, WANG Z Y, ZHENG L H, et al. Characterization of Microstructure and Texture Evolution in Ti664 Titanium Alloy after Multidirectional Forging and Annealing Treatments [J].Journal of the Minerals, Metals & Materials Society, 2019, 71(12):4687-4695.
[7]ZHANG Z X, QU S J, FENG A H, et al.The Low Strain Rate Response of As-cast Ti-6Al-4V Alloy with an Initial Coarse Lamellar Structure [J].Metals, 2018, 8(4):1-13.
[8]KUMAR P, PRAKASH O, RAMAMURTY U. Micro-and Meso-structures and Their Influence on Mechanical Properties of Selectively Laser Melted Ti-6Al-4V [J].Acta Materialia, 2018, 154:246-260.
[9]JOVANOVIC' M T, TADIC' S, ZEC S, et al. The Effect of Annealing Temperatures and Cooling Rates on Microstructure and Mechanical Properties of Investment Cast Ti-6Al-4V Alloy [J]. Materials and Design, 2006, 27(3):192-199.
[10]SESHACHARYULU T, MEDEIROS S C, FRAZIER W G, et al. Microstructural Mechanisms during Hot Working of Commercial Grade Ti-6Al-4V with Lamellar Starting Structure [J]. Materials Science and Engineering:A, 2002, 325(1/2):112-125.
[11]ZHANG Z X, QU S J, FENG A H, et al. Microstructural Mechanisms during Multidirectional Isothermal Forging of As-cast Ti-6Al-4V Alloy with an Initial Lamellar Microstructure [J]. Journal of Alloys and Compounds, 2019, 773:277-287.
[12]BELADI H, CHAO Q, ROHRER G S.Variant Selection and Intervariant Crystallographic Planes Distribution in Martensite in a Ti-6Al-4V Alloy [J]. Acta Materialia, 2014, 80:478-489.
[13]WARWICK J L W, JONES N G, BANTOUNAS I, et al. In Situ Observation of Texture and Microstructure Evolution during Rolling and Globularization of Ti-6Al-4V [J]. Acta Materialia, 2013, 61(5):1603-1615.
[14]PRAKASH D G L, HONNIBALL P, RUGG D, et al. The Effect of β Phase on Microstructure and Texture Evolution during Thermomechanical Processing of α+β Ti Alloy [J]. Acta Materialia, 2013, 61(9):3200-3213.
[15]OBASI G C, MOAT R J, PRAKASH D G L, et al. In Situ Neutron Diffraction Study of Texture Evolution and Variant Selection during the α→β→α Phase Transformation in Ti-6Al-4V [J]. Acta Materialia, 2012, 60(20):7169-7182.
[16]ZHANG C J, GUO C X, ZHANG S Z, et al. Microstructural Manipulation and Improved Mechanical Properties of a Near Α Titanium Alloy [J]. Materials Science and Engineering:A, 2020, 771:138569.
[17]薛克敏, 郭威威, 时迎宾, 等, TA15钛合金多向锻压组织和拉伸性能研究 [J]. 稀有金属材料与工程 2019, 48(10):3340-3345.
XUE Kemin, GUO Weiwei, SHI Yingbin, et al. Research on Multi-directional Forging Microstructure and Tensile Properties of TA15 Titanium Alloy [J]. Rare Metal Materials and Engineering 2019, 48(10):3340-3345.
[18]陶国强,祁广源,曲寿江,等.多向等温锻造Ti-44Al-4Nb-1.5Cr-0.5Mo-0.1B-0.1Y合金高温压缩变形行为研究 [J]. 钛工业进展,2018, 35(3) :11-15.
TAO Guoqiang, QI Guangyuan, QU Shoujiang, et al. Research on High Temperature Compression Deformation Behavior of Multi-directional Isothermal Forging Ti-44Al-4Nb-1.5Cr-0.5Mo-0.1B-0.1Y Alloy[J]. Progress in Titanium Industry 2018, 35(3):11-15.
[19]张阳,邵建波,陈韬,等. Mg-5.6Gd-0.8Zn合金多向锻造过程中的变形机制及动态再结晶 [J]. 金属学报, 2020, 56(5):723-735.
ZHANG Yang, SHAO Jianbo, CHEN Tao, et al. Deformation Mechanism and Dynamic Recrystallization of Mg-5.6Gd-0.8Zn Alloy during Multi-directional Forging Process [J]. Acta Metallurgica Sinica, 2020, 56(5):723-735.
[20]纪小虎, 李萍, 时迎宾, 等, TA15钛合金等温多向锻造晶粒细化机理与力学性能 [J]. 中国有色金属学报,2019, 29(11):2515-2523.
JI Xiaohu, LI Ping, SHI Yingbin, et al. Grain Refinement Mechanism and Mechanical Properties of TA15 Titanium Alloy Isothermal Multi-directional Forging [J]. The Chinese Journal of Nonferrous Metals, 2019, 29(11):2515-2523.
[21]ZHEREBTSOV S V, SALISHCHEV G A, GALEYEV R M, et al. Production of Submicrocrystalline Structure in Large-scale Ti-6Al-4V Billet by Warm Severe Deformation Processing [J]. Scripta Materialia, 2004, 51(12):1147-1151.
[22]XU W, BRANDT M, SUN S, et al. Additive Manufacturing of Strong and Ductile Ti-6Al-4V by Selective Laser Melting via in Situ Martensite Decomposition [J]. Acta Materialia, 2015, 85:74-84.
[23]BIELER T R, SEMIATIN S L. The Origins of Heterogeneous Deformation during Primary Hot Working of Ti-6Al-4V [J]. International Journal of Plasticity, 2002, 18(9):1165-1189.
[24]CAO S, CHU R K, ZHOU X G, et al. Role of Martensite Decomposition in Tensile Properties of Selective Laser Melted Ti-6Al-4V [J]. Journal of Alloys and Compounds, 2018, 744:357-363.
[25]CHAO Q, HODGSON P D, BELADI H. Microstructure and Texture Evolution during Symmetric and Asymmetric Rolling of a Martensitic Ti-6Al-4V Alloy [J]. Metallurgical and Materials Transactions A, 2016, 47(1):531-545.
|