[1]陈伟伟,高润霖,刘力生,等. 中国心血管病报告2017概要 [J]. 中国循环杂志,2018,33(1):1-8.
CHEN Weiwei, GAO Runlin, LIU Lisheng, et al. Chinese Cardiovascular Disease Report 2017 Summary [J]. Chinese Journal of Circulation, 2018, 33(1):1-8.
[2]李寰. 心室辅助装置溶血性能评价方法及叶轮优化设计研究 [D]. 杭州:浙江大学,2018.
LI Huan. Research on the Hemolytic Performance Evaluation and Impeller Optimization Design of VADs [D].Hangzhou:Zhejiang University, 2018.
[3]武悦,朱良凡,罗云. 计算流体力学方法分析一例喷射悬浮血泵的液力、悬浮及溶血特性 [J]. 机械工程学报,2018,54(20):52-58.
WU Yue, ZHU Liangfan, LUO Yun. Computational Fluid Dynamics Analysis of an Injection Suspension Blood Pump on the Hydraulic, Suspension and Hemolysis Property [J]. Journal of Mechanical Engineering, 2018, 54(20):52-58.
[4]刘彤,宋德利,刘小慧,等. 机械循环辅助在心力衰竭中的应用 [J]. 心肺血管病杂志,2015, 34(10):782-787.
LIU Tong, SONG Deli, LIU Xiaohui, et al. Application of Mechanical Circulatory Assistance in Heart Failure [J]. Journal of Cardiovascular and Pulmonary Diseases, 2015, 34(10):782-787.
[5]GRAY N A, SELZMAN C H. Current Status of the Total Artificial Heart [J]. American Heart Journal, 2006, 152(1):4-10.
[6]LOOR G, GONZALEZ-STAWINSKI G. Pulsatile vs. Continuous Flow in Ventricular Assist Device Therapy [J]. Best Practice & Research Clinical Anaesthesiology, 2012, 26(2):105-115.
[7]KRABATSCH T, SCHWEIGER M, DANDEL M, et al. Is Bridge to Recovery More Likely with Pulsatile Left Ventricular Assist Devices than with Nonpulsatile-flow Systems[J]. The Annals of Thoracic Surgery, 2011, 91(5):1335-1340.
[8]HUANG F, RUAN X, FU X. Pulse-pressure-enhancing Controller for Better Physiologic Perfusion of Rotary Blood Pumps Based on Speed Modulation [J]. ASAIO Journal, 2014, 60(3):269-279.
[9]HUANG F, GOU Z, FU Y, et al. Effects on the Pulmonary Hemodynamics and Gas Exchange with a Speed Modulated Right Ventricular Assist Rotary Blood Pump:a Numerical Study [J]. BioMedical Engineering OnLine, 2018, 17(1):No. 142.
[10]ISING M, WARREN S, SOBIESKI M, et al. Flow Modulation Algorithms for Continuous Flow Left Ventricular Assist Devices to Increase Vascular Pulsatility:a Computer Simulation Study [J]. Cardiovascular Engineering and Technology, 2011, 2:90-100.
[11]SOUCY K G, GIRIDHARAN G A, CHOI Y, et al. Rotary Pump Speed Modulation for Generating Pulsatile Flow and Phasic Left Ventricular Volume Unloading in a Bovine Model of Chronic Ischemic Heart Failure [J]. Heart Lung Transplant, 2015, 34(1):122-131.
[12]ZIMPFER D, STRUEBER M, AIGNER P, et al. Evaluation of the Heart Ware Ventricular Assist Device Lavare Cycle in a Particle Image Velocimetry Model and in Clinical Practice [J]. European Journal of Cardio-thoracic Surgery, 2016, 50:839-848.
[13]沈朋. 离心式血泵内部流场数值模拟及血损研究[D]. 哈尔滨:哈尔滨理工大学,2017.
SHEN Peng. Numerical Simulation of Internal Flow Field and Blood Damage Study of Centrifugal Blood Pump [D]. Harbin:Harbin University of Science and Technology, 2017.
[14]朱卓玲,赵伟国,黄峰. 基于BP神经网络的旋转血泵生理控制 [J]. 中国生物医学工程学报,2019,38(5):581-589.
ZHU Zhuoling, ZHAO Weiguo, HUANG Feng. Physiological Control of Rotary Blood Pumps Based on BP Neural Network [J]. Chinese Journal of Biomedical Engineering, 2019, 38(5):581-589.
[15]LI H, GOU Z, HUANG F, et al. Evaluation of the Hemolysis and Fluid Dynamics of a Ventricular Assist Device under the Pulsatile Flow Condition[J]. Journal of Hydrodynamics, 2019, 31(5):965-975.
[16]BLUDSZUWEIT C. Model for a General Mechanical Blood Damage Prediction [J]. Artificial Organs, 1995, 19:583-598.
[17]CHEN Z, MONDAL N K, DING J, et al. Paradoxical Effect of Nonphysiological Shear Stress on Platelets and von Willebrand Factor [J]. Artificial Organs, 2016, 40(7):659-668.
[18]HASIN T, DEO S, MALESZEWSKI J J, et al. The Role of Medical Management for Acute Intravascular Hemolysis in Patients Supported on Axial Flow LVAD [J]. ASAIO Journal, 2014, 60(1):9-14.
[19]TOLPEN S, JANMAAT J, REIDER C, et al. Programmed Speed Reduction Enables Aortic Valve Opening and Increased Pulsatility in the LVAD-assisted Heart [J]. ASAIO Journal, 2015, 61(5):540-547.
|