[1]ZHAO X L,JIA M P. Fault Diagnosis of Rolling Bearing Based on Feature Reduction with Global-local Margin Fisher Analysis[J]. Neurocomputing, 2018, 315:447-464.
[2]RODRIGUEZ N. Combining Multi-scale Wavelet Entropy and Kernelized Classification for Bearing Multi-fault Diagnosis[J]. Entropy, 2019, 21(2):15-25.
[3]PEETERS C, GUILLAUME P. A Comparison of Cepstral Editing Methods as Signal Pre-processing Techniques for Vibration-based Bearing Fault Detection[J]. Mechanical Systems & Signal Processing, 2017, 9 (1):354-381.
[4]张龙,毛志德,杨世锡.基于包络谱带通峭度的改进谱峭度方法及在轴承诊断中的应用[J].振动与冲击,2018,37(23):171-179.
ZHANG Long, MAO Zhide, YANG Shixi. An Improved Kurtogram Based on Band-pass Envelope Spectral Kurtosis with Its Application in Bearing Fault Diagnosis [J]. Journal of Vibration and Shock, 2018, 37(23):171-179.
[5]苏文胜,王奉涛,张志新,等.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J].振动与冲击,2010,29(3):18-21.
SU Wensheng, WANG Fengtao, ZHANG Zhixin, et al. Application of EMD Denoising and Spectral Kurtosis in Early Fault Diagnosis of Rolling Element Bearings. [J]. Journal of Vibration and Shock, 2010, 29(3):18-21.
[6]SELESNICK I W. Resonance-based Signal Decomposition:a New Sparsity-enabled Signal Analysis Method[J]. Signal Processing, 2011, 91(12):2793-2809.
[7]WANG H H, CHEN J, DONG G M, et al. Feature Extraction of Rolling Bearing's Early Weak Fault Based on EEMD and Tunable Q-factor Wavelet Transform[J]. Mechanical Systems and Signal Processing, 2014, 48(1/2):103-119.
[8]LI Y B, Liang X H, XU M Q, et al.Early Fault Feature Extraction of Rolling Bearing Based on ICD and Tunable Q-factor Wavelet Transform[J]. Mechanical Systems and Signal Processing, 2017, 8(6):204-223.
[9]WIGGINS R A. Minimum Entropy Deconvolution[J]. Geophysical Prospecting for Petrole, 1980, 16(1):21-35.
[10]MCDONALD G L, ZHAO Q, ZUO M J. Maximum Correlated Kurtosis Deconvolution and Application on Gear Tooth Chip Fault Detection[J]. Mechanical Systems & Signal Processing, 2012,33:237-255.
[11]MCDONALD G L, ZHAO Q. Multipoint Optimal Minimum Entropy Deconvolution and Convolution Fix:Application to Vibration Fault Detection[J]. Mechanical Systems and Signal Processing, 2017, 82:461-477.
[12]BARSZCZ T, SAWALHI N. Fault Detection Enhancement in Rolling Element Bearings Using the Minimum Entropy Deconvolution[J]. Archives of Acoustics, 2012. 37(2):131-141.
[13]RICCI R, BORGHESANI P, CHATTERTON S, et al. The Combination of Empirical Mode Decomposition and Minimum Entropy Deconvolution for Roller Bearing Diagnostics in Non-stationary Operation[C]∥ASME 2012—International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE. Chicago, 2012:47-63.
[14]SHANG Z W, GENG R, LI C, et al. Rolling Bearing Fault Diagnosis Method Based on MOMEDA and IEWT[J]. International Journal of Information and Management Sciences, 2018, 29(4):345-363.
[15]陈祥龙,冯辅周,张兵志,等.基于平方包络谱相关峭度的最优共振解调诊断滚动轴承故障[J].机械工程学报,2018,54(21):90-100.
CHEN Xianglong, FENG Fuzhou, ZHANG Bingzhi, et al. Rolling Bearing Fault Diagnosis with Optimal Resonant Frequency Band Demodulation Based on Squared Envelope Spectral Correlated Kurtosis[J]. Journal of Mechanical Engineering, 2018, 54(21):90-100.
[16]SELESNICK I W. Wavelet Transform with Tunable Q-factor[J]. IEEE Transactions on Signal Processing, 2011, 59(8):3560-3575.
[17]STARCK J M, DONOHO D L. Image Decomposition via the Combination of Sparse Representations and a Variational Approach[J]. IEEE Transactions on Image Processing, 2005, 14(10):1570-1582.
[18]KENNEDY J. Particle Swarm Optimization[J]. Encyclopedia of Machine Learning, 2010,32(6):760-766.
[19]ENDO H, RANDALL R B. Enhancement of Autoregressive Model Based Gear Tooth Fault Detection Technique by The Use of Minimum Entropy Deconvolution Filter[J]. Mechanical Systems and Signal Processing, 2007, 21(2):906-919.
|