[1]LI Jinfeng, PENG Zhuowei, LI Chaoxing, et al. Mechanical Properties, Corrosion Behaviors and Microstructures of 7075 Aluminium Alloy with Various Aging Treatments[J]. Transactions of Nonferrous Metals Society of China, 2008,18(4):755-762.
[2]DAS P, JAYAGANTHAN R, SINGH I V. Tensile and Impact-toughness Behaviour of Cryorolled Al 7075 Alloy[J]. Material and Design, 2011,32(3):1298-1305.
[3]LIAO Z R, MONACA A L, MURRAY J, et al. Surface Integrity in Metal Machining—Part I:Fundamentals of Surface Characteristics and Formation Mechanisms[J]. International Journal of Machine Tools and Manufacture, 2021,162:103687.
[4]DEBNATH S, REDDY M M, YI Q S. Environmental Friendly Cutting Fluids and Cooling Techniques in Machining:a Review[J]. Journal of Cleaner Production, 2014,83:33-47.
[5]KIM D Y, KIM D M, PARK H W. Numerical and Experimental Study of End-milling Process of Titanium Alloy with a Cryogenic Internal Coolant Supply[J]. International Journal of Advanced Manufacturing Technology, 2019,105(7/8):2957-2975.
[6]STAMPFER B, GOLDA P, SCHIEBL R, et al. Cryogenic Orthogonal Turning of Ti-6Al-4V Analysis of Nitrogen Supply Pressure Variation and Subcooler Usage[J]. The International Journal of Advanced Manufacturing Technology, 2020,111(1/2):359-369.
[7]GUPTA M K, SONG Q H, LIU Z Q, et al. Experimental Characterisation of The Performance of Hybrid Cryo-lubrication Assisted Turning of Ti-6Al-4V Alloy[J].Tribology International, 2021,153:106582.
[8]AMIGO F J, URBIKAIN G, PEREIRA O, et al. Combination of High Feed Turning with Cryogenic Cooling on Haynes 263 and Inconel 718 Superalloys[J]. Journal of Manufacturing Processes, 2020,58:208-222.
[9]KHANNA N, AGRAWAL C, GUPTA M K, et al. Tool Wear and Hole Quality Evaluation in Cryogenic Drilling of Inconel 718 Superalloy[J].Tribology International,2020, 143:106084.
[10]BORDIN A, BRUSCHI S, GHIOTTI A,et al. Analysis of Tool Wear in Cryogenic Machining of Additive Manufactured Ti6Al4V Alloy[J].Wear, 2015, 328:89-99.
[11]SARTORI S, PEZZATO L, DABALA M, et al. Surface Integrity Analysis of Ti6Al4V after Semi-finishing Turning under Different Low-temperature Cooling Strategies[J].Journal of Materials Engineering and Performance, 2018, 27(9):4810-4818.
[12]BERTOLINI R, LIZZUL L, PEZZATO L, et al. Improving Surface Integrity and Corrosion Resistance of Additive Manufactured Ti6Al4V Alloy by Cryogenic Machining[J].The International Journal of Advanced Manufacturing Technology,2019,104(5/8):2839-2850.
[13]BAGHERZADEH A, BUDAK E. Investigation of Machinability in Turning of Difficult-to-cut Materials Using a New Cryogenic Cooling Approach[J]. Tribology International, 2018,119:510-520.
[14]GRABNER F, OSTERREICHER J A, GRUBER B, et al. Cryogenic Forming of Al-Mg Alloy Sheet for Car Outer Body Applications[J]. Advanced Engineering Materials, 2019,21(8):1900089.
[15]SHOKRANI A, DHOKIA V, NEWMAN S T. Investigation of the Effects of Cryogenic Machining on Surface Integrity in CNC End Milling of Ti-6Al-4V Titanium Alloy[J].Journal of Manufacturing Processes, 2016, 21:172-179.
[16]ROTELLA G. Effect of Surface Integrity Induced by Machining on High Cycle Fatigue Life of 7075-T6 Aluminum Alloy[J]. Journal of Manufacturing Processes, 2019, 41:83-91.
[17]YIN Xiaolong, DENG Wenjun, ZOU Yinhui, et al. Ultrafine Grained Al 7075 Alloy Fabricated by Cryogenic Temperature Large Strain Extrusion Machining Combined with Aging Treatment[J]. Materials Science and Engineering A, 2019, 762:138106.
[18]SHOJAEI K, SAJADIFAR S V, YAPICI G G. On the Mechanical Behavior of Cold Deformed Aluminum 7075 Alloy at Elevated Temperatures[J].Materials Science and Engineering:A, 2016, 670:81-89.
[19]黄逸爽. 积屑瘤的稳定性及鳞刺问题初探[J].南昌航空工业学院学报, 1988(1):1-8.
HUANG Yishuang. A Discussion on Stability of Built-up Edges (BUE) and on Fish-scales Formed on Cut Surface[J]. Journal of Nanchang Institute of Aeronautical Technology, 1988(1):1-8.
[20]周泽华. 犁沟、鳞刺、积屑瘤及他们之间的关系[J].华南理工大学学报(自然科学版), 1989,2(17):1-12.
ZHOU Zehua. Plowing-groove, Scale, Built-up Edge and Their Relationship[J]. Journal of South China University of Technology(Natural Sciences), 1989, 2(17) :1-12.
[21]张东初,裴旭明.加工工艺对表面粗糙度及疲劳寿命的影响[J].中国机械工程, 2003,14 (16) :1374-1377.
ZHANG Dongchu, PEI Xuming. Effects of Machining Processes on Surface Roughness and Fatigue Life[J]. China Mechanical Engineering, 2003, 14(16) :1374-1377.
[22]何耿煌,鄢国洪,李凌祥,等.典型钛合金TC17车削过程鳞刺生成规律及其抑制措施[J].中国机械工程, 2020, 31(13):1585-1592.
HE Genghuang, YAN Guohong, LI Lingxiang, et al. Scale Thorn Generation Regularity and Its Inhibitory Measures in Turning Processes of Typical Titanium Alloy TC17[J].China Mechanical Engineering, 2020, 31(13):1585-1592.
[23]李俊涛.浅析金属切削加工中鳞刺的形成原因及抑制措施[J].机械研究与应用,2015,28(2):152-153.
LI Juntao. Analysis on Causes and Suppression Measures to Burr in Metal Cutting Process[J]. Mechanical Research and Application,2015,28(2):152-153.
[24]周泽华. 金属切削原理[M].上海:上海科技出版社,1984:126-127.
ZHOU Zehua. Theory of Metal Cutting[M]. Shanghai:Shanghai Scientific and Technical Publishers,1984:126-127.
[25]PANG Xueqin, ZENG Yuning, ZHANG Jiayang, et al. Analytical Model and Experimental Verification of Poisson Burr Formation in Ductile Metal Machining[J]. Journal of Materials Processing Technology, 2021, 290:116966.
[26]KUMAR P, KUMAR M, BAJPAI V, et al. Recent Advances in Characterization, Modeling and Control of Bur Formation in Micro-milling[J]. Manufacturing Letters, 2017, 13:1-5.
[27]PANG Xueqin, LIU Xiao, ZHANG Jiayang, et al. Investigation on the Modelling and Characterization of Top Edge Burr Formation in Slotting Finned Tube[J]. International Journal of Advanced Manufacturing Technology, 2021, 112(1/2):537-551.
|