中国机械工程 ›› 2022, Vol. 33 ›› Issue (05): 529-550.DOI: 10.3969/j.issn.1004-132X.2022.05.002
刘明政1;李长河1;曹华军2;张松3;陈云4;刘波5;张乃庆6;周宗明7
出版日期:
2022-03-10
发布日期:
2022-03-22
通讯作者:
李长河(通信作者),男,1966年生,教授、博士研究生导师。研究方向为智能与洁净精密加工。E-mail:sy_lichanghe@163.com。
作者简介:
刘明政,男,1989年生,博士研究生、工程师。研究方向为绿色精密加工。E-mail:lmzzz654321@163.com。
基金资助:
LIU Mingzheng1;LI Changhe1;CAO Huajun2;ZHANG Song3;CHEN Yun4LIU Bo5;ZHANG Naiqing6;ZHOU Zongming7
Online:
2022-03-10
Published:
2022-03-22
摘要: 综述了低温微量润滑技术的最新进展,阐明了研究成果中的关键科学问题。首先,系统分析了从传统设置到创新设计的低温微量润滑装备在切削中的应用形式和工艺特点。其次,揭示了低温微量润滑的冷却润滑机理及其对切削热力演变和工件表面质量的影响机制。然后,基于低温微量润滑的作用机理和应用形式,系统分析了低温微量润滑在车削、铣削、磨削中针对典型难加工金属的应用性能,发现低温微量润滑技术对抑制热力耦合损伤及提高表面质量的效果优于低温或微量润滑单独使用。最后,分析了该技术的局限性并展望了其发展方向,为低温微量润滑技术的工程应用提供了参考。
中图分类号:
刘明政, 李长河, 曹华军, 张松, 陈云, 刘波, 张乃庆, 周宗明. 低温微量润滑加工技术研究进展与应用[J]. 中国机械工程, 2022, 33(05): 529-550.
LIU Mingzheng, LI Changhe, CAO Huajun, ZHANG Song, CHEN YunLIU Bo, ZHANG Naiqing, ZHOU Zongming. Research Progresses and Applications of CMQL Machining Technology[J]. China Mechanical Engineering, 2022, 33(05): 529-550.
[1]胡定华, 邱晗, 李强. 局部沸腾液滴内部气泡动态行为研究[J]. 工程热物理学报, 2021, 42(4):1026-1031. HU Dinghua, QIU Han, LI Qiang. Study on Bubble Dynamics Inside Droplets under Local Boiling[J]. Journal of Engineering Thermophysics, 2021, 42(4):1026-1031. [2]张涛, 阮金锴, 程巍. 切削液废水处理技术研究进展[J]. 环境工程学报, 2020, 14(9):2362-2377. ZHANG Tao, RUAN Jinkai, CHENG Wei. Progresses in the Treatment Processes and Techniques for Cutting Fluid Wastewater[J]. Chinese Journal of Environmental Engineering, 2020, 14(9):2362-2377. [3]袁松梅, 韩文亮, 朱光远, 等. 绿色切削微量润滑增效技术研究进展[J]. 机械工程学报, 2019, 55(5):175-185. YUAN Songmei, HAN Wenliang, ZHU Guang-yuan, et al. Recent Progress on the Efficiency Increasing Methods of Minimum Quantity Lubrication Technology in Green Cutting[J]. Journal of Mechanical Engineering, 2019, 55(5):175-185. [4]张高峰, 李景焘, 王志刚, 等. 低温冷风纳米粒子微量润滑磨削轴承钢试验研究[J]. 中国机械工程, 2019, 30(19):2342-2348. ZHANG Gaofeng, LI Jingtao, WANG Zhigang, et al. Experimental Study on Nano-CMQL Grinding of Bearing Steels[J]. China Mechanical Engineering, 2019, 30(19):2342-2348. [5]刘大维, 覃孟扬, 罗永顺, 等. 切削参数对碳钢微量润滑切削温度的影响[J]. 机床与液压, 2016, 44(15):133-136. LIU Dawei, QIN Mengyang, LUO Yongshun, et al. Effect of Cutting Parameters on MQL Cutting Temperature of Carbon Steel [J]. Machine Tool and Hydraulics, 2016, 44(15):133-136. [6]裴宏杰, 刘成石, 王贵成, 等. MQL高速车削7075铝合金的试验研究[J]. 工具技术, 2018, 52(3):32-34. PEI Hongjie, LIU Chengshi, WANG Guicheng, et al. Experimental Study on High-speed MQL Turning of 7075 Aluminum Alloy[J]. Tool Engineering, 2018, 52(3):32-34. [7]VISWANATHAN R, RAMESH S, SUBBURAM V. Measurement and Optimization of Performance Characteristics in Turning of Mg Alloy under Dry and MQL Conditions[J]. Measurement, 2018, 120:107-113. [8]SADEGHI M H, HADDAD M J, TAWAKOLI T, et al. Minimal Quantity Lubrication-MQL in Grinding of Ti-6Al-4V Titanium Alloy [J]. The International Journal of Advanced Manufacturing Technology, 2009, 44:487-500. [9]KAYNAK Y. Evaluation of Machining Performance in Cryogenic Machining of Inconel 718 and Comparison with Dry and MQL Machining[J]. International Journal of Advanced Manufacturing Technology, 2014, 72:919-933. [10]MIA M, BASHIR M A, KHAN M A, et al. Optimization of MQL Flow Rate for Minimum Cutting Force and Surface Roughness in End Milling of Hardened Steel (HRC40) [J]. The International Journal of Advanced Manufacturing Technology, 2017, 89:675-690. [11]高东强, 曾行军, 何乃如, 等. 低温切削技术在难加工材料加工中的应用[J]. 制造技术与机床, 2020(6):39-43. GAO Dongqiang, ZENG Hangjun, HE Nairu, et al. Application of Low Temperature Cutting Technology in the Processing of Difficult Materials[J]. Manufacturing Technology and Machine Tool, 2020(6):39-43. [12]JAMIL M, KHAN A M, HEGAB H, et al. Effects of Hybrid Al2O3-CNT Nanofluids and Cryogenic Cooling on Machining of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2019, 102(9/12):3895-3909. [13]JAWAHIR I S, ATTIA H, BIERMANN D, et al. Cryogenic Manufacturing Processes[J]. CIRP Annals—Manufacturing Technology, 2016, 65(2):713-736. [14]SHOKRANI A, SAMARRAI A I, NEWMAN S T. Hybrid Cryogenic MQL for Improving Tool Life in Machining of Ti-6Al-4V Titanium Alloy[J]. Journal of Manufacturing Processes, 2019, 43:229-243. [15]IQBAL A, ZHAO W, ZAINI J. Comparative Analyses of Multi-pass Face-turning of a Titanium Alloy under Various Cryogenic Cooling and Micro-Lubrication Conditions[J]. International Journal of Lightweight Materials and Manufacture, 2019, 2(4):388-396. [16]RIBEIRO F S F, LOPES J C, GARCIA M V, et al. New Knowledge about Grinding Using MQL Simultaneous to Cooled Air and MQL Combined to Wheel Cleaning Jet Technique[J]. International Journal of Advanced Manufacturing Technology, 2020, 109(3/4):905-917. [17]PUSAVEC F, DESHPANDE A, YANG S, et al. Sustainable Machining of High Temperature Nickel Alloy-Inconel 718:Part 1—Predictive Performance Models[J]. Journal of Cleaner Production, 2014, 81:255-269. [18]BIERMANN D, ABRAHAMS H, METZGER M. Experimental Investigation of Tool Wear and Chip Formation in Cryogenic Machining of Titanium Alloys[J]. Advances in Manufacturing, 2015, 3(4):292-299. [19]KHANAFER K, ELTAGGAZ A, DEIAB I, et al. Toward Sustainable Micro-drilling of Inconel718 Superalloy Using MQL-nanofluid[J]. International Journal of Advanced Manufacturing Technology, 2020, 107(7/8):3459-3469. [20]ZHANG C L, ZHANG S, YAN X F, et al. Effects of Internal Cooling Channel Structures on Cutting Forces and Tool Life in Side Milling of H13 Steel under Cryogenic Minimum Quantity Lubrication Condition[J]. International Journal of Advanced Manufacturing Technology, 2016, 83(5/8):975-984. [21]LU T, KUDARAVALLI R, GEORGIOU G. Cryogenic Machining through the Spindle and Tool for Improved Machining Process Performance and Sustainability:Pt. Ⅰ, System Design[J]. Procedia Manufacturing, 2018, 21:266-272. [22]TAHMASEBI E, ALBERTELLI P, LUCCHINI T, et al. CFD and Experimental Analysis of the Coolant Flow in Cryogenic Milling[J]. International Journal of Machine Tools and Manufacture, 2019, 140:20-33. [23]GRGURAS D, STERLE L, KRAJNIK P, et al. A Novel Cryogenic Machining Concept Based on a Lubricated Liquid Carbon Dioxide[J]. International Journal of Machine Tools and Manufacture, 2019, 145:103456. [24]BERGS T, PUAVEC F, KOCH M, et al. Investigation of the Solubility of Liquid CO2 and Liquid Oil to Realize an Internal Single Channel Supply in Milling of Ti-6Al-4V[J]. Procedia Manufacturing, 2015, 33:200-207. [25]CORDES S, HBNER F, SCHAARSCHMIDT T. Next Generation High Performance Cutting by Use of Carbon Dioxide as Cryogenics[J]. Procedia CIRP, 2014, 14:401-405. [26]ISLAM A, MIA M, DHAR N R. Effects of Internal Cooling by Cryogenic on the Machinability of Hardened Steel[J]. International Journal of Advanced Manufacturing Technology, 2017, 90(1/4):11-20. [27]FERNNDEZ D, SAND A, BENGOETXEA I. Cryogenic Milling:Study of the Effect of CO2 Cooling on Tool Wear When Machining Inconel 718, Grade EA1N Steel and Gamma TiAl[J]. Lubricants, 2019, 7(1):7010010. [28]李宽, 刘海波, 刘阔, 等. 液氮内喷式刀柄温度场仿真分析[J]. 工具技术, 2018, 52(12):67-71. LI Kuan, LIU Haibo, LIU Kuo, et al. Temperature Field Simulation of Liquid Nitrogen Jet Cooling Tool Holder[J]. Tool Engineering, 2018, 52(12):67-71. [29]王永青, 韩灵生, 刘阔, 等. 超低温加工机床的液氮冷却介质可靠传输与精准调控[J]. 机械工程学报, 2020, 56(1):187-195. WANG Yongqing, HAN Lingsheng, LIU Kuo, et al. Reliable Transmission and Precise Regulation of Liquid Nitrogen as the Coolant of Cryogenic Machine Tool[J]. Journal of Mechanical Engineering, 2020, 56(1):187-195. [30]王永青, 郭东明, 郭立杰, 等. 超低温加工技术的研究现状及发展趋势[J]. 上海航天, 2020, 37(3):11-21. WANG Yongqing, GUO Dongming, GUO Lijie,et al. Research Status and Development Trend of Cryogenic Machining Technology[J]. Aerospace Shanghai, 2020, 37(3):11-21. [31]王永青, 班仔优, 韩灵生, 等. 液氮内喷式主轴迷宫密封结构变形对泄漏特性的影响[J]. 机械工程学报, 2021, 57(3):129-136. WANG Yongqing, BAN Zaiyou, HAN Lingsheng, et al. Influence of Structure Deformation on Leakage Characteristics in Labyrinth Seal Inside the Cryogenic Internal-cooling Spindle[J]. Journal of Mechanical Engineering, 2021, 57(3):129-136. [32]熊伟强, 王成勇. 一种用于金属加工的超临界二氧化碳复合雾化喷嘴:CN207205987U[P].2018-04-10. XIONG Weiqiang, WANG Chengyong. The Utility Model Relates to a Supercritical Carbon Dioxide Composite Atomizing Nozzle for Metal Processing:CN207205987U [P].2018-04-10. [33]LIU M Z, LI C H, ZHANG Y B, et al. Cryogenic Minimum Quantity Lubrication Machining:from Mechanism to Application[J].Frontiers of Mechanical Engineering, 2021, 16(4): 649-697. [34]SANCHEZ J A, POMBO I, ALBERDI R, et al. Machining Evaluation of a Hybrid MQL-CO2 Grinding Technology[J]. Journal of Cleaner Production, 2010, 18(18):1840-1849. [35]权国政, 温志航, 沈力, 等. 镍基高温合金热塑性变形晶粒细化与粗化的博弈关系及演进[J]. 材料导报, 2021, 35(18):18124-18130. QUAN Guozheng, WEN Zhihang, SHEN Li, et al. Game Relation between Grain Refinement and Grain Coarsening in Thermoplastic Deformation of Nickel-based Superalloy and Its Evolution[J]. Material Report, 2021, 35(18):18124-18130. [36]HUANG P, LI H C, ZHU W L, et al. Effects of Eco-friendly Cooling Strategy on Machining Performance in Micro-scale Diamond Turning of Ti-6Al-4V[J]. Journal of Cleaner Production, 2020, 243:118526. [37]毛聪, 邹洪富, 黄勇, 等. 微量润滑平面磨削接触区换热机理的研究[J]. 中国机械工程, 2014, 25(6):826-831. MAO Cong, ZOU Hongfu, HUANG Yong, et al. Research on Heat Transfer Mechanism in Grinding Zone for MQL Surface Grinding[J]. China Mechanical Engineering, 2014, 25(6):826-831. [38]ZHANG J C, LI C H, ZHANG Y B, et al. Temperature Field Model and Experimental Verification on Cryogenic Air Nanofluid Minimum Quantity Lubrication Grinding[J]. International Journal of Advanced Manufacturing Technology, 2018, 97(1/4):209-228. [39]KIM D Y, KIM D M, PARK H W. Predictive Cutting Force Model for a Cryogenic Machining Process Incorporating the Phase Transformation of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2018, 96(1/4):1293-1304. [40]BERMINGHAM M J, KIRSCH J, SUN S, et al. New Observations on Tool Life, Cutting Forces and Chip Morphology in Cryogenic Machining Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture, 2011, 51(6):500-511. [41]HONG S Y, DING Y, JEONG W C. Friction and Cutting Forces in Cryogenic Machining of Ti-6Al-4V[J]. International Journal of Machine Tools and Manufacture, 2001, 41(15):2271-2285. [42]ELANCHEZHIA N J, KUMAR M P. Effect of Nozzle Angle and Depth of Cut on Grinding Titanium under Cryogenic CO2[J]. Materials and Manufacturing Processes, 2018, 33(13):1466-1470. [43]SUN S J, BRANDT M, PALANISAMY S, et al. Effect of Cryogenic Compressed Air on the Evolution of Cutting Force and Tool Wear during Machining of Ti-6Al-4V Alloy[J]. Journal of Materials Processing Technology, 2015, 221:243-254. [44]RAHMAN M, KUMAR A S, SALAM M U, et al. Effect of Chilled Air on Machining Performance in End Milling[J]. International Journal of Advanced Manufacturing Technology, 2003, 21(10/11):787-795. [45]宋文刚, 刘战强, 吕文军. 工件初始表面几何状态对铣削力及表面形貌的影响[J]. 工具技术, 2021, 55(7):28-32. SONG Wengang, LIU Zhanqiang, LYU Wenjun. Influence of Initial Surface Geometric States of Workpiece on Milling Force and Surface Topography[J]. Tool Engineering, 2021, 55(7):28-32. [46]SIVALINGAM V, SUN J, YANG B, et al. Machining Performance and Tool Wear Analysis on Cryogenic Treated Insert during End Milling of Ti-6Al-4V Alloy[J]. Journal of Manufacturing Processes, 2018, 36:188-196. [47]SARTORI S, GHIOTTI A, BRUSCHI S. Hybrid Lubricating/Cooling Strategies to Reduce the Tool Wear in Finishing Turning of Difficult-to-cut Alloys[J]. Wear, 2017, 376:107-114. [48]姜增辉, 陈荣葛, 王书利, 等. 切削参数对高强度钢切削温度影响的仿真研究[J]. 工具技术, 2021, 55(8):64-67. JIANG Zenghui, CHEN Rongge, WANG Shuli, et al. Simulation Study on Influence of Cutting Parameters on Cutting Temperature of High Strength Steel[J]. Tool Engineering, 2021, 55(8):64-67. [49]YILDIRIM C V. Experimental Comparison of the Performance of Nanofluids, Cryogenic and Hybrid Cooling in Turning of Inconel625[J]. Tribology International, 2019, 137:366-378. [50]YIN Q A, LI C H, DONG L, et al. Effects of the Physicochemical Properties of Different Nanoparticles on Lubrication Performance and Experimental Evaluation in the NMQL Milling of Ti-6Al-4V[J]. International Journal of Advanced Manufacturing Technology, 2018, 99(9/12):3091-3109. [51]BAGHERZADEH A, BUDAK E. Investigation of Machinability in Turning of Difficult-to-cut Materials Using a New Cryogenic Cooling Approach[J]. Tribology International, 2018, 119:510-520. [52]ZOU L, HUANG Y, ZHOU M, et al. Effect of Cryogenic Minimum Quantity Lubrication on Machinability of Diamond Tool in Ultraprecision Turning of 3Cr2NiMo Steel[J]. Materials and Manufacturing Processes, 2018, 33(9):943-949. [53]关集俱, 刘德利, 王勇, 等. MWCNTs复合物纳米流体的摩擦学性能[J]. 摩擦学学报, 2020, 40(3):289-298. GUAN Jiju, LIU Deli, WANG Yong, et al. Tribological Properties of Nanofluids in MWCNTs Composites[J]. Tribology, 2020, 40(3):289-298. [54]DAMIR A, SHI B, ATTIA M H. Flow Characteristics of Optimized Hybrid Cryogenic Minimum Quantity Lubrication Cooling in Machining of Aerospace Materials[J]. CIRP Annals—Manufacturing Technology, 2019, 68(1):77-80. [55]MEHTA A, HEMAKUMAR S, PATIL A, et al. Influence of Sustainable Cutting Environments on Cutting Forces, Surface Roughness and Tool Wear in Turning of Inconel 718[J]. Materials Today:Proceedings, 2018, 5(2):6746-6754. [56]PARK K H, SUHAIMI M A, YANG G D, et al. Milling of Titanium Alloy with Cryogenic Cooling and Minimum Quantity Lubrication (MQL)[J]. International Journal of Precision Engineering and Manufacturing, 2017, 18(1):5-14. [57]PEREIRA O, CELAYA A, URBIKAIN G, et al. CO2 Cryogenic Milling of Inconel718:Cutting Forces and Tool Wear[J]. Journal of Materials Research and Technology, 2020, 9(4):8459-8468. [58]PUSAVEC F, STERLE L, KALIN M, et al. Tribology of Solid-lubricated Liquid Carbon Dioxide Assisted Machining[J]. CIRP Annals—Manufacturing Technology, 2020, 69(1):69-72. [59]PAUL S, CHATTOPADHYAY P P, CHATTOPADHYAY A B. Effects of Cryo-cooling in Grinding Steels[J]. Journal of Materials Processing Technology, 1993, 37(1/4):791-800. [60]FREDJ N B, SIDHOM H. Effects of the Cryogenic Cooling on the Fatigue Strength of the AISI 304 Stainless Steel Ground Components[J]. Cryogenics, 2006, 46(6):439-448. [61]MANIMARAN G, KUMAR M P, VENKATASAMY R. Influence of Cryogenic Cooling on Surface Grinding of Stainless Steel 316[J]. Cryogenics, 2014, 59:76-83. [62]REDDY P P, GHOSH A. Some Critical Issues In Cryo-grinding by a Vitrified Bonded Alumina Wheel Using Liquid Nitrogen Jet[J]. Journal of Materials Processing Technology, 2016, 229:329-337. [63]SONI S K, SINGH V, SAHOO A K, et al. Improvement in Grinding of Composite Ceramic by Using Cryogenic Cooling Technique[J]. International Journal of Manufacturing Technology and Management, 2012, 23(1/3):60-77. [64]AN Q L, FU Y C, XU J H. Research on Cryogenic Pneumatic Mist Jet Impinging Cooling and Lubricating of Grinding Processes[J]. Key Engineering Materials, 2008, 359/360:460-464. [65]ZHANG J C, LI C H, ZHANG Y B, et al. Experi-mental Assessment of an Environmentally Friendly Grinding Process Using Nanofluid Minimum Quantity Lubrication with Cryogenic Air[J]. Journal of Cleaner Production, 2018, 193:236-248. [66]ZHANG J C, WU W T, LI C H, et al. Convective Heat Transfer Coefficient Model under Nanofluid Minimum Quantity Lubrication Coupled with Cryogenic Air Grinding Ti-6Al-4V[J]. International Journal of Precision Engineering and Manufacturing—Green Technology, 2021, 8(4):1113-1135. [67]WANG Y G, LI C H, ZHANG Y B, et al. Experimental Evaluation on Tribological Performance of the Wheel/Workpiece Interface in Minimum Quantity Lubrication Grinding with Different Concentrations of Al2O3 Nanofluids[J]. Journal of Cleaner Production, 2017, 142:3571-3583. [68]STACHURSKI W, SAWICKI J, WOJCIK R, et al. Influence of Application of Hybrid MQL-CCA Method of Applying Coolant during Hob Cutter Sharpening on Cutting Blade Surface Condition[J]. Journal of Cleaner Production, 2018, 171:892-910. [69]张彦彬, 李长河, 贾东洲, 等. MoS2/CNTs混合纳米流体微量润滑磨削加工表面质量试验评价[J]. 机械工程学报, 2018, 54(1):161-170. ZHANG Yanbin, LI Changhe, JIA Dongzhou, et al. Experimental Evaluation of the Workpiece Surface Quality of MoS2/CNT Nanofluid for Minimal Quantity Lubrication in Grinding[J]. Journal of Mechanical Engineering, 2018, 54(1):161-170. [70]DONG L, LI C H, ZHOU F M, et al. Temperature of the 45 Steel in the Minimum Quantity Lubricant Milling with Different Biolubricants[J]. International Journal of Advanced Manufacturing Technology, 2021, 113(9/10):2779-2790. [71]TOUGGUI Y, UYSAL A, EMIROGLU U, et al. Evaluation of MQL Performances Using Various Nanofluids in Turning of AISI 304 Stainless Steel[J]. International Journal of Advanced Manufacturing Technology, 2021, 115(11/12):3983-3997. [72]DUAN Z J, LI C H, ZHANG Y B, et al. Milling Surface Roughness for 7050 Aluminum Alloy Cavity Influenced by Nozzle Position of Nanofluid Minimum Quantity Lubrication[J]. Chinese Journal of Aeronautics, 2021, 34(6):33-53. [73]KARABULUT S, BILGIN M. Friction Drilling of AA7075-T6 and AZ31B Alloys under Dry and Oil Containing Ceramic Particulates[J]. Journal of Manufacturing Processes, 2021, 65:70-79. [74]SCHOOP J, SALES W F, JAWAHIR I S. High Speed Cryogenic Finish Machining of Ti-6Al-4V with Polycrystalline Diamond Tools[J]. Journal of Materials Processing Technology, 2017, 250:1-8. [75]GUPTA M K, SONG Q H, LIU Z Q, et al. Experimental Characterisation of the Performance of Hybrid Cryo-lubrication Assisted Turning of Ti-6Al-4V Alloy[J]. Tribology International, 2021, 153:106582. [76]GAJRANI K K. Assessment of Cryo-MQL Environment for Machining of Ti-6Al-4V[J]. Journal of Manufacturing Processes, 2020, 60:494-502. [77]GUPTA M K, SONG Q H, LIU Z Q, et al. Ecological, Economical and Technological Perspectives Based Sustainability Assessment in Hybrid-cooling Assisted Machining of Ti-6Al-4V Alloy[J]. Sustainable Materials and Technologies, 2020, 26:e00218. [78]DANISH M, GUPTA M K, RUBAIEE S, et al. Influence of Hybrid Cryo-MQL Lubri-cooling Strategy on the Machining and Tribological Characteristics of Inconel718[J]. Tribology International, 2021, 163:107178. [79]CETINDAG H A, CICEK A, UCAK N. The Effects of Cryo-MQL Conditions on Tool Wear and Surface Integrity in Hard Turning of AISI 52100 Bearing Steel[J]. Journal of Manufacturing Processes, 2020, 56:463-473. [80]PEREIRA O, RODRIGUEZ A, FERNANDEZ A A I, et al. Cryogenic and Minimum Quantity Lubrication for an Eco-efficiency Turning of AISI 304[J]. Journal of Cleaner Production, 2016, 139:440-449. [81]COURBON C, STERLE L, CICI M, et al. Tribological Effect of Lubricated Liquid Carbon Dioxide on Ti-Al6-4V and AISI 1045 under Extreme Contact Conditions[J]. Procedia Manufacturing, 2020, 47:511-516. [82]张慧萍, 靳杰, 王尊晶, 等. 低温微量润滑高速车削高强度钢表面质量研究[J]. 哈尔滨理工大学学报, 2019, 24(6):33-40. ZHANG Huiping, JIN Jie, WANG Zunjing, et al. Study on the Machined Surface Quality in High Speed Turning High Strength Steel under Cryogenic Minimum Quantity Lubrication [J]. Journal of Harbin University of Science and Technology, 2019, 24(6):33-40. [83]LIN H S, WANG C Y, YUAN Y H, et al. Tool Wear in Ti-6Al-4V Alloy Turning under Oils on Water Cooling Comparing with Cryogenic Air Mixed with Minimal Quantity Lubrication[J]. International Journal of Advanced Manufacturing Technology, 2015, 81(1/4):87-101. [84]LAI Z W, WANG C Y, ZHENG L J, et al. Effect of Cryogenic Oils-on-water Compared with Cryogenic Minimum Quantity Lubrication in Finishing Turning of 17-4PH Stainless Steel[J]. Machining Science and Technology, 2020, 24(6):1016-1036. [85]贺爱东, 叶邦彦, 王子媛. 低温微量润滑切削304不锈钢的实验研究[J]. 润滑与密封, 2015, 40(6):100-103. HE Aidong, YE Bangyan, WANG Ziyuan. Experi-mental Study on Cryogenic Minimal Quantity Lubrication Cutting 304 Stainless Steel[J]. Lubrication Engineering, 2015, 40(6):100-103. [86]MULYANA T, ABD R E, YAHAYA S N M. The Influence of Cryogenic Supercritical Carbon Dioxide Cooling on Tool Wear during Machining High Thermal Conductivity Steel[J]. Journal of Cleaner Production, 2017, 164:950-962. [87]WIKA K K, LITWA P, HITCHENS C. Impact of Supercritical Carbon Dioxide Cooling with Minimum Quantity Lubrication on Tool Wear and Surface Integrity in the Milling of AISI 304L Stainless Steel[J]. Wear, 2019, 426:1691-1701. [88]CAI C Y, LIANG X, AN Q L, et al. Cooling/Lubrication Performance of Dry and Supercritical CO2-based Minimum Quantity Lubrication in Peripheral Milling Ti-6Al-4V[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(2):405-421. [89]ZHANG S, LI J F, WANG Y W. Tool Life and Cutting Forces in End Milling Inconel 718 under Dry and Minimum Quantity Cooling Lubrication Cutting Conditions[J]. Journal of Cleaner Production, 2012, 32:81-87. [90]袁松梅, 刘伟东, 严鲁涛. 低温微量润滑技术铣削高强钢的试验研究[J]. 航空制造技术, 2011(5):43-45. YUAN Songmei, LIU Weidong, YAN Lutao. Experimental Study on Milling High-strength Steel with CA-MQL Technology[J]. Aeronautical Manu-facturing Technology, 2011(5):43-45. [91]王晓铭, 张建超, 王绪平, 等. 冷风微量润滑纳米粒子体积分数对钛合金磨削性能的影响[J]. 金刚石与磨料磨具工程, 2020, 40(5):23-29. WANG Xiaoming, ZHANG Jianchao, WANG Xuping, et al. Effect of Nanoparticle Volume on Grinding Performance of Titanium Alloy in Cryogenic Air Minimum Quantity Lubrication[J]. Diamond and Abrasives Engineering, 2020, 40(5):23-29. [92]王晓铭, 张建超, 王绪平, 等. 不同冷却工况下的磨削钛合金温度场模型及验证[J]. 中国机械工程, 2021, 32(5):572-578. WANG Xiaoming, ZHANG Jianchao, WANG Xuping, et al. Temperature Field Model and Verification of Titanium Alloy Grinding under Different Cooling Conditions[J]. China Mechanical Engineering, 2021, 32(5):572-578. [93]BALAN A S S, VIJAYARAGHAVAN L, KRISHNAMURTHY R, et al. An Experimental Assessment on the Performance of Different Lubrication Techniques in Grinding of Inconel751[J]. Journal of Advanced Research, 2016, 7(5):709-718. [94]GAO X X, ZENG W D, MA H Y, et al. The Origin of Coarse Macrograin during Thermo-mechanical Processing in a High Temperature Titanium Alloy[J]. Journal of Alloys and Compounds, 2019, 775:589-600. [95]何朕, 李国和, 孙勇, 等. 钛合金高速切削加工试验研究进展[J]. 工具技术, 2021, 55(8):11-23. HE Zhen, LI Guohe, SUN Yong, et al. Experimental Research Progress of High Speed Cutting of Titanium Alloy[J]. Tool Engineering, 2021, 55(8):11-23. [96]UMBRELLO D, MICARI F, JAWAHIR I S. The Effects of Cryogenic Cooling on Surface Integrity in Hard Machining:a Comparison with Dry Machining[J]. CIRP Annals—Manufacturing Technology, 2012, 61(1):103-106. [97]ROTELLA G, DILLON O W, UMBRELLO D, et al. The Effects of Cooling Conditions on Surface Integrity in Machining of Ti-6Al-4V Alloy[J]. International Journal of Advanced Manufacturing Technology, 2014, 71(1/4):47-55. [98]李钦奉, 宋霄, 李辉, 等. 镍基高温合金车削热通量模型研究[J]. 机床与液压, 2020, 48(15):166-170. LI Qinfeng, SONG Xiao, LI Hui, et al. Research on the Turning Heat Flux Model of Nickel-based Superalloy[J]. Machine Tool and Hydraulics, 2020, 48(15):166-170. [99]狄成宽, 黄树涛, 于晓琳, 等. 刀具材料对切削AF1410高强度钢温度场的影响[J]. 兵器装备工程学报, 2021, 42(6):243-250. DI Chengkuan, HUANG Shutao, YU Xiaolin, et al. Effect of Cutting Tool Materials on Temperature Field of Cutting AF1410 High Strength Steel[J]. Journal of Ordnance Equipment Engineering, 2021, 42(6):243-250. |
[1] | 吴怀超, 吴白羽, 张秀华. 石蜡感温阀传热性能的数字仿真研究 [J]. J4, 201016, 21(16): 1921-1926. |
[2] | 鲁开讲, 师俊平, 张锋涛. 平面三自由度并联机构动力学优化设计 [J]. J4, 201016, 21(16): 1926-1931. |
[3] | 张金阳, 许伟春, 王笑含, 江小辉, 高山. 铣削工艺优化对镍基高温合金加工残余应力分布影响研究[J]. 中国机械工程, 2024, 35(04): 624-635. |
[4] | 陈忠安, 包彬颖, 张广义, 潮阳, 王玉峰, 姚喆赫, 焦俊科, 张文武, . 碳纤维增强聚合物复合材料水导激光切割损伤机理研究[J]. 中国机械工程, 2024, 35(04): 700-710. |
[5] | 韩晓辉, 林森, 方喜风, 王振中, 孙兆刚, 余飞龙, 李磊, 马运五, 李永兵, . 铆钉镀层对单边摩擦铆焊接头成形及力学性能的影响[J]. 中国机械工程, 2024, 35(04): 721-730. |
[6] | 李荣启, 闫涛, 何智成, 米栋, 姜潮, 郑静. 流-热-力耦合的高性能结构拓扑优化设计方法[J]. 中国机械工程, 2024, 35(03): 487-497. |
[7] | 倪敬, 崔智, 何利华, 付新, 朱泽飞. 聚四氟乙烯材料切削工艺和应用研究进展[J]. 中国机械工程, 2024, 35(03): 498-514. |
[8] | 包锐, 刘阔, 张杰, 韩灵生, 李建明, 左月帅, 刘海波, 王永青. 聚碳酸酯超低温冷却车削表面形貌试验研究[J]. 中国机械工程, 2024, 35(02): 201-207. |
[9] | 陈炼, 魏小虎, 曹强, 周岩, 杨迎新, 胡川, 赵志杰, 伍彬. 凸棱非平面聚晶金刚石齿的破岩机理及在含砾地层中的应用[J]. 中国机械工程, 2024, 35(02): 371-379. |
[10] | 陈俊翔, 孔祥东, 许克龙, 艾超, . 高压螺纹插装式溢流阀综合性能优化[J]. 中国机械工程, 2023, 34(24): 2909-2919,2926. |
[11] | 郑倩, 张亚欧, 高强, 卢军成, 杨翔钧, 赵万生, . 基于硼酸溶液的电火花加工机理分析及实验研究[J]. 中国机械工程, 2023, 34(24): 2936-2945. |
[12] | 任勇生, 姚东辉, 张金峰. 时滞金属切削系统颤振的研究进展[J]. 中国机械工程, 2023, 34(21): 2548-2567,2576. |
[13] | 王明, 董海, 王柏何, 王峥, 王加威. 2.5D Cf/SiC刹车材料浮动磨削工艺试验研究[J]. 中国机械工程, 2023, 34(20): 2434-2441. |
[14] | 查旭明, 袁智, 秦浩, 袭琳清, 张涛, 姜峰. 钛合金超声冲击强化研究现状及发展趋势[J]. 中国机械工程, 2023, 34(19): 2269-2287. |
[15] | 蒲志新, 郭建伟, 潘玉奇, 白杨溪. 2PPaPaR并联机构性能分析及优化设计[J]. 中国机械工程, 2023, 34(19): 2304-2312. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||