[1]Van VALKENBURG M E, VAUGHN R L, WILLIAMS M, et al. Thermochemistry of Ionic Liquid Heat-transfer Fluids[J]. Thermochimica Acta, 2005, 425(1/2):181-188.
[2]汪福宪. 石墨烯/离子液体集热纳米流体的热物性及光热转换性能[D]. 广州:华南理工大学, 2013.
WANG Fuxian. Thermophysical Property and Solar-thermal Convertion Efficiency of Graphene/Ionic Liquid Nanofluids for Solar Collectors[D]. Guangzhou:South China University of Technology, 2013.
[3]HOFFMANN J F, VAITILINGOM G, HENRY J F, et al. Temperature Dependence of Thermophysical and Rheological Properties of Seven Vegetable Oils in View of Their Use as Heat Transfer Fluids in Concentrated Solar Plants[J]. Solar Energy Materials and Solar Cells, 2018, 178:129-138.
[4]DWECK J, SAMPAIO C M S. Analysis of the Thermal Decomposition of Commercial Vegetable Oils in Air by Simultaneous TG/DTA[J]. Journal of Thermal Analysis and Calorimetry, 2004, 75(2):385-391.
[5]CAI M, YU Q, LIU W, et al. Ionic Liquid Lubricants:When Chemistry Meets Tribology[J]. Chemical Society Reviews, 2020, 49:7753-7818.
[6]PHAM M Q, YOON H S, KHARE V, et al. Evaluation of Ionic Liquids as Lubricants in Micro Milling-process Capability and Sustainability[J]. Journal of Cleaner Production, 2014, 76:167-173.
[7]GOINDI G S, JAYAL A D, SARKAR P. Application of Ionic Liquids in Interrupted Minimum Quantity Lubrication Machining of Plain Medium Carbon Steel:Effects of Ionic Liquid Properties and Cutting Conditions[J]. Journal of Manufacturing Processes, 2018, 32:357-371.
[8]DEL SOL I, GMEZ A J, RIVERO A, et al. Tribological Performance of Ionic Liquids as Additives of Water-based Cutting Fluids[J]. Wear, 2019, 426/427:845-852.
[9]WANG X, LI C, ZHANG Y, et al. Vegetable Oil-based Nanofluid Minimum Quantity Lubrication Turning:Academic Review and Perspectives[J]. Journal of Manufacturing Processes, 2020, 59:76-97.
[10]GARCIA M V, LOPES J C, DINIZ A E, et al. Grinding Performance of Bearing Steel Using MQL Under Different Dilutions and Wheel Cleaning for Green Manufacture[J]. Journal of Cleaner Production, 2020, 257:120376.
[11]GUO S, LI C, ZHANG Y, et al. Experimental Evaluation of the Lubrication Performance of Mixtures of Castor Oil with Other Vegetable Oils in MQL Grinding of Nickel-based Alloy[J]. Journal of Cleaner Production, 2017, 140:1060-1076.
[12]SILVA L R, CORRA E C S, BRANDAO J R, et al. Environmentally Friendly Manufacturing:Behavior Analysis of Minimum Quantity of Lubricant-MQL in Grinding Process[J]. Journal of Cleaner Production, 2020, 256:103287.
[13]AWALE A S, VASHISTA M, YUSUFZAI M Z K. Multi-objective Optimization of MQL Mist Parameters for Eco-friendly Grinding[J]. Journal of Manufacturing Processes, 2020, 56:75-86.
[14]SHARMIN I, MOON M, TALUKDER S, et al. Impact of Nozzle Design on Grinding Temperature of Hardened Steel under MQL Condition[J]. Materials Today:Proceedings, 2021, 38:3232-3237.
[15]QU S, GONG Y, YANG Y, et al. An Investigation of Carbon Nanofluid Minimum Quantity Lubrication for Grinding Unidirectional Carbon Fibre-reinforced Ceramic Matrix Composites[J]. Journal of Cleaner Production, 2020, 249:119353.
[16]GAO T, LI C, JIA D, et al. Surface Morphology Assessment of CFRP Transverse Grinding Using CNT Nanofluid Minimum Quantity Lubrication[J]. Journal of Cleaner Production, 2020, 277:123328.
[17]ZHANG J, WU W, LI C, et al. Convective Heat Transfer Coefficient Model under Nanofluid Minimum Quantity Lubrication Coupled with Cryogenic Air Grinding Ti-6Al-4V[J]. International Journal of Precision Engineering and Manufacturing-Green Technology, 2021, 8(4):1113-1135.
[18]张高峰, 李景焘, 王志刚, 等. 低温冷风纳米粒子微量润滑磨削轴承钢试验研究[J]. 中国机械工程, 2019, 30(19):2342-2348.
ZHANG Gaofeng, LI Jingtao, WANG Zhigang, et al. Experimental Study on Nano-CMQL Grinding of Bearing Steels[J]. China Mechanical Engineering, 2019, 30(19):2342-2348.
[19]SATO B K, LOPES J C, RODRIGUEZ R L, et al. Novel Comparison Concept between CBN and Al2O3 Grinding Process for Eco-friendly Production[J]. Journal of Cleaner Production, 2022, 330:129673.
[20]王德祥, 孙树峰, 唐沂珍, 等. 微量润滑磨削界面的分子动力学模拟[J]. 西安交通大学学报, 2020, 54(12):168-175.
WANG Dexiang, SUN Shufeng, TANG Yizhen, et al. Molecular Dynamics Simulation for Grinding Interface under Minimum Quantity Lubrication[J]. Journal of Xian Jiaotong University, 2020, 54(12):168-175.
[21]FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 09[CP]. Wallingford, CT:Gaussian, Inc., 2010.
[22]LOS J H, KROES J M, ALBE K, et al. Extended Tersoff Potential for Boron Nitride:Energetics and Elastic Properties of Pristine and Defective h-BN[J]. Physical Review B, 2017, 96(18):1-11.
[23]BONNY G , TERENTYEV D , PASIANOT R C, et al. Interatomic Potential to Study Plasticity in Stainless Steels:the FeNiCr Model Alloy[J]. Modelling & Simulation in Materials Science & Engineering, 2011, 19(8):085008.
[24]LIU Z, HUANG S, WANG W, et al. A Refined Force Field for Molecular Simulation of Imidazolium-based Ionic Liquids[J]. Journal of Physical Chemistry B, 2004, 108(34):12978-12989.
[25]MOORE D F. Principles and Applications of Tribology[M]. Oxford:Pergamon Press, 1975.
[26]孙建芳, 李傲松, 苏峰华, 等. 表面织构钛合金的干摩擦和全氟聚醚油润滑下的摩擦学性能研究[J]. 摩擦学学报, 2018, 38(6):658-664.
SUN Jianfang, LI Aosong, SU Fenghua, et al. Tribological Property of Titanium Alloy Surface with Different Texture Structure under Dry Friction and Perfluoropolyether Lubrication[J]. Tribology, 2018, 38(6):658-664.
|