[1]MA Lianjie, CAI Chongyan, TAN Yanqing, et al. Theoretical Model of Transverse and Longitudinal Surface Roughness and Study on Brittle-ductile Transition Mechanism for Turning Fluorophlogopite Ceramic[J]. International Journal of Mechanical Sciences, 2019, 150:715-726.
[2]MA Lianjie, GONG Yadong, CHEN Xiaohui. Study on Surface Roughness Model and Surface Forming Mechanism of Ceramics in Quick Point Grinding[J]. International Journal of Machine Tools and Manufacture, 2014, 77:82-92.
[3]MA Lianjie, YU Aibing, GU Lichen, et al. Mechanism of Compound Fracture and Removal in Grinding Process for Low-expansion Glass Ceramics[J]. The International Journal of Advanced Manufacturing Technology, 2017, 91(5/8):2303-2313.
[4]陈剑斌. 硬脆难加工材料高速磨削表面完整性及亚表面损伤研究[D]. 长沙:湖南大学, 2015.
CHEN Jianbin. Study on the Surface Integrity and Subsurface Damage in High Speed Grinding of Hard Brittle Materials[D].Changsha:Hunan University, 2015.
[5]李琛,张飞虎,张宣,等. 硬脆单晶材料塑性域去除机理研究进展[J]. 机械工程学报. 2019, 55(3):181-190.
LI Chen, ZHANG Feihu, ZHANG Xuan, et al. Research Progress of Ductile Removal Mechanism for Hard-brittle Single Crystal Materials[J]. Journal of Mechanical Engineering, 2019, 55(3):181-190.
[6]张玉周,皮钧. 脆性材料延性域加工研究进展[J]. 集美大学学报(自然科学版),2013, 18(1):38-47.
ZHANG Yuzhou, PI Jun. Research Progress of Ductile Zone Machining for Brittle Materials[J]. Journal of Jimei University (Natural Science Edition), 2013, 18(1):38-47.
[7]MA Lianjie, CAI Chongyan, BI Changbo. Theoretical Model of Crack Propagation Behavior and Fracture Chip Formation Mechanism during Turning of Fluorophlogopite Ceramic[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(9/12):2585-2596.
[8]HE C L, ZONG W J, ZHANG J J. Influencing Factors and Theoretical Modeling Methods of Surface Roughness in Turning Process:State-of-the-art[J]. International Journal of Machine Tools and Manufacture, 2018, 129:15-26.
[9]MA Lianjie, GONG Yadong, CHEN Xiaohui, et al.Surface Roughness Model in Experiment of Grinding Engineering Glass-ceramics[J]. Proceedings of the Institution of Mechanical Engineers. Part B:Engineering Manufacture, 2014(12):1563-1569.
[10]李春林,康敏,王兴盛,等. 光学镜片精密车削表面粗糙度预测及参数优化[J]. 压电与声光, 2015, 37(5):796-801.
LI Chunlin, KANG Min, WANG Xingsheng, et al. Surface Roughness Prediction and Parameter Optimization for Precision Turning of Optical Lens[J]. Piezoelectrics & Acoustoptics, 2015, 37(5):796-801.
[11]ABDULKADIR L N, ABOU-EL-HOSSEIN K, ODEDEYI P B, et al. RSM and MD—a Roughness Predictive Model and Simulation Comparison of Monocrystalline Optical Grade Silicon[J]. The International Journal of Advanced Manufacturing Technology, 2021, 112(1/2):437-451.
[12]SNOEYS R, PETERS Y, DECNEUT A. The Significance of Chip Thickness in Grinding[J]. Annals of the CIRP, 1974, 23(2):227-237.
[13]WANG Kechong, LI Songhua, SUN Jian. Study on Surface Roughness of Zirconia Ceramics in High Efficient and Precision Grinding Process[J]. IOPConference Series. Materials Science and Engineering, 2020, 892(1):12103.
[14]王兴盛,康敏,傅秀清,等. 镜片精密车削表面粗糙度预测[J]. 机械工程学报, 2013, 49(15):192-198.
WANG Xingsheng, KANG Min, FU Xiuqing, et al. Surface Roughness Prediction of Lens Precision Turning[J]. Journal of Mechanical Engineering, 2013, 49 (15):192-198.
[15]马廉洁,左宇辰,周云光,等. 氧化锆陶瓷车削刀具几何参数的多目标优化[J]. 东北大学学报(自然科学版), 2020, 41(8):1129-1134.
MA Lianjie, ZUO Yuchen, ZHUO Yunguang, et al. Multi Objective Optimization of Geometric Parameters of Zirconia Ceramic Turning Tools[J]. Journal of Northeast University (Natural Science Edition), 2020, 41 (8):1129-1134.
[16]王晔,马廉洁,左宇辰,等. 基于鱼群优化BP神经网络的切削温度建模[J]. 组合机床与自动化加工技术, 2019(11):22-24.
WANG Ye, MA Lianjie, ZUO Yuchen, et al. Cutting Temperature Modeling Based on Fish Swarm Optimization BP Neural Network[J]. Modular Machine Tools and Automatic Machining Technology, 2019 (11):22-24.
[17]毕长波,王宇浩,马廉洁,等. 基于GA-BP算法的刀具磨损预测模型[J]. 组合机床与自动化加工技术, 2018(10):145-146.
BI Changbo, WANG Yuhao, MA Lianjie, et al. Tool Wear Prediction Model Based on GA-BP Algorithm[J]. Modular Machine Tools and Automatic Machining Technology, 2018(10):145-146.
[18]马廉洁,曹小兵,巩亚东,等. 基于遗传算法与BP神经网络的微晶玻璃点磨削工艺参数优化[J]. 中国机械工程, 2015, 26(1):102-106.
MA Lianjie, CAO Xiaobing, GONG Yadong, et al. Optimization of Point Grinding Process Parameters of Glass Ceramics Based on Genetic Algorithm and BP Neural Network[J]. China Mechanical Engineering, 2015, 26 (1):102-106.
[19]ZHOU Yunguang, MA Lianjie, TAN Yanqing, et al. Process Parameters Optima in Quick-point Grinding Ceramics Based on the Intelligent Algorithm[J]. Advances in Mechanical Engineering, 2020, 12(1):2072159098.
[20]马廉洁. 工程陶瓷点磨削表面质量建模及其演化机理的研究[D]. 沈阳:东北大学, 2014.
MA Lianjie. Research on Surface Quality Modeling and Evolution Mechanism of Point Grinding of Engineering Ceramics[D].Shenyang:Northeast University, 2014.
[21]王晔. 多算法融合的可加工陶瓷数值模拟及工艺参数优化[D]. 沈阳:东北大学, 2020.
WANG Ye. Numerical Simulation and Process Parameter Optimization of Machinable Ceramics Based on Multi Algorithm Fusion[D].Shenyang:Northeast University, 2020.
[22]ZHANG Dongxu, BI Guo, SUN Zhiji, et al. Online Monitoring of Precision Optics Grinding Using Acoustic Emission Based on Support Vector Machine[J]. The International Journal of Advanced Manufacturing Technology, 2015, 80(5/8):761-774.
[23]孙林,杨世元. 基于最小二乘支持矢量机的成形磨削表面粗糙度预测及磨削用量优化设计[J]. 机械工程学报, 2009, 45(10):254-260.
SUN Lin, YANG Shiyuan. Prediction of Surface Roughness and Optimization Design of Grinding Parameters in Form Grinding Based on Least Squares Support Vector Machine[J]. Journal of Mechanical Engineering, 2009, 45 (10):254-260.
[24]MALKIN S, HWANG T W. Grinding Mechanisms for Ceramics[J]. CIRP Annals, 1996, 45(2):569-580.
[25]BOOTHOYD G. Fundamentals of Metal Machining and Machine Tools[M]. New York:McGraw-Hill, 1975.
[26]VAJPAYEE S. Analytical Study of Surface Roughness in Turning[J].Wear, 1981(70):165-175.
[27]BIFANO T G, DOW T A, SCATTERGOOD R O. Ductile-Regime Grinding:a New Technology for Machining Brittle Materials[J]. Journal of Manufacturing Science and Engineering, 1991(113):184-189.
[28]WU Chongjun, LI Beizhi, LIANG S Y. A Critical Energy Model for Brittle-ductile Transition in Grinding Considering Wheel Speed and Chip Thickness Effects[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2016, 230(8):1372-1380.
[29]马廉洁,巩亚东,顾立晨,等. 可加工微晶玻璃陶瓷磨削表面成形机制[J]. 机械工程学报, 2017, 53(15):201-207.
MA Lianjie, GONG Yadong, GU Lichen, et al. Grinding Surface Forming Mechanism of Machinable Glass Ceramics[J]. Journal of Mechanical Engineering, 2017, 53 (15):201-207.
[30]LIU Kui, LI Xiaoping, LIANG S Y, et al. Nanometer-scale, Ductile-mode Cutting of Soda-Lime Glass[J]. Journal of Manufacturing Processes, 2005, 7(2):95-101.
[31]MALKIN S, Grinding Technology:Theory and Applications of Machining with Abrasives[M]. New York:Wiley, 1989.
[32]GOPAL A V, RAO P V. A New Chip-thickness Model for Performance Assessment of Silicon Carbide Grinding[J]. The International Journal of Advanced Manufacturing Technology, 2004, 24(11/12):816-820.
[33]JIANG Jingliang, GE Peiqi, HONG Jun. Study on Micro-interacting Mechanism Modeling in Grinding Process and Ground Surface Roughness Prediction [J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5/8):1035-1052.
[34]姜峰,李剑峰,孙杰,等. 硬脆材料塑性加工技术的研究现状[J]. 工具技术, 2007(8):3-8.
JIANG Feng, LI Jianfeng, SUN Jie, et al. Research Status of Plastic Processing Technology for Hard and Brittle Materials[J].Tool Engineering, 2007(8):3-8.
[35]ZHANG Chunyu, LIU Han, ZHAO Qingliang, et al. Mechanisms of Ductile Mode Machining for ALON Ceramics[J]. Ceramics International, 2020, 46(2):1844-1853.
[36]ARIF M, ZHANG Xinquan, Rahman M, et al. A Predictive Model of the Critical Undeformed Chip Thickness for Ductile-brittle Transition in Nano-machining of Brittle Materials[J]. International Journal of Machine Tools and Manufacture, 2013, 64:114-122.
[37]吴玉厚,王浩,孙健,等. 氮化硅陶瓷磨削表面质量的建模与预测[J]. 表面技术, 2020, 49(3):281-289.
WU Yuhou, WANG Hao, SUN Jian, et al. Modeling and Prediction of Grinding Surface Quality of Silicon Nitride Ceramics[J]. Surface Technology, 2020, 49 (3):281-289.
[38]AGARWAL S, RAO P V. A Probabilistic Approach to Predict Surface Roughness in Ceramic Grinding[J]. International Journal of Machine Tools and Manufacture, 2005, 45(6):609-616.
[39]AGARWAL S, RAO P V. A New Surface Roughness Prediction Model for Ceramic Grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture, 2005, 219(11):811-819.
[40]AGARWAL S, RAO P V. A New Surface Roughness Prediction Model for Ceramic Grinding[J]. Proceedings of the Institution of Mechanical Engineers, Part B:Journal of Engineering Manufacture. 2005(11):811-819.
[41]AGARWAL S, RAO P V. Modeling and Prediction of Surface Roughness in Ceramic Grinding[J]. International Journal of Machine Tools and Manufacture, 2010, 50(12):1065-1076.
[42]SHAO Yamin, LI Beizhi, LIANG S Y. Predictive Modeling of Surface Roughness in Grinding of Ceramics[J]. Machining Science and Technology, 2015, 19(2):325-338.
[43]HECKER R L, LIANG S Y, WU Xiaojian, et al. Grinding Force and Power Modeling Based on Chip Thickness Analysis[J]. The International Journal of Advanced Manufacturing Technology, 2007, 33(5/6):449-459.
[44]YOUNIS M A, Alawi H. Probabilistic Analysis of the Surface Grinding Process[J]. Transactions of the Canadian Society for Mechanical Engineering, 1984(4):208-213.
[45]WU Chongjun, LI Beizhi, LIU Yao, et al. Surface Roughness Modeling for Grinding of Silicon Carbide Ceramics Considering Co-existence of Brittleness and Ductility[J]. International Journal of Mechanical Sciences, 2017, 133:167-177.
[46]马廉洁,蔡重延,毕长波,等. 车削氟金云母陶瓷脆性破碎机理及表面粗糙度模型[J]. 东北大学学报(自然科学版), 2019, 40(2):239-243.
MA Lianjie, CAI Chongyan, BI Changbo, et al. Brittle Fracture Mechanism and Surface Roughness Model of Turning Fluorophlogopite Ceramics[J]. Journal of Northeast University (Natural Science Edition), 2019, 40 (2):239-243.
[47]陈景强,马廉洁,孟博,等. 氟金云母表面形成机理及表面粗糙度理论模型[J]. 中国机械工程, 2020, 31(24):2918-2923.
CHEN Jingqiang, MA Lianjie, MENG Bo, et al. Surface Formation Mechanism and Surface Roughness Theoretical Model of Fluorophlogopite[J]. China Mechanical Engineering, 2020, 31 (24):2918-2923.
[48]ZHANG Shuo, ZONG Wenjun. A Novel Surface Roughness Model for Potassium Dihydrogen Phosphate (KDP) Crystal in Oblique Diamond Turning[J]. International Journal of Mechanical Sciences, 2020, 173:105462.
|