[1]刘波, 杨晰琼, 曹志远, 等. 带分流叶片离心压气机优化设计[J]. 推进技术,2014,35(11):1461-1468.
LIU Bo,YANG Xiqiong, CAO Zhiyuan, et al. Optimization Design of a Centrifugal Compressor with Splitters[J]. Journal of Propulsion Technology,2014,35(11):1461-1468.
[2]张海涛, 邵文洋, 王巍. 离心叶轮分流叶片位置与扩压器相互影响的模拟研究[J]. 风机技术, 2017, 59(5):13-19.
ZHANG Haitao, SHAO Wenyang, WANG Wei. Numerical Analysis of the Influence of the Splitter Blade Position and Diffuser in a Centrifugal Compressor[J]. Chinese Journal of Turbomachinery, 2017, 59(5):13-19.
[3]KLOCKE F, KLINK A. Turbomachinery Component Manufacture by Application of Electrochemical, Electro-physical and Photonic Processes[J]. CIRP Annals, 2014, 63(2):703-726.
[4]LI Z Y, WEI X T. State-of-art Challenges and Outlook on Manufacturing of Cooling Holes for Turbine Blades[J]. Machining Science and Technology, 2015, 19(3):361-399.
[5]KLOCKE F, ZEIS M, HARST S. Modeling and Simulation of the Electrochemical Machining (ECM) Material Removal Process for the Manufacture of Aero Engine Components[J]. Procedia CIRP, 2013, 8:265-270.
[6]于冰. 精密电解套料阴极设计与优化[J].航空制造技术,2016, 22:48-51.
YU Bing. Design and Optimization of Precision ECM Cathode[J]. Aeronautical Manufacturing Technology, 2016, 22:48-51.
[7]彭苏皓, 徐正扬, 谷洲之. 整体构件周向叶片电解加工流场设计及实验[J]. 南京航空航天大学学报, 2014, 46 (5):750-756.
PENG Suhao, XU Zhengyang, GU Zhouzhi. Flow Field Design and Experiment of Electrochemical Machining of Integral Components Circumferential Blade[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2014, 46 (5):750-756.
[8]刘嘉, 徐正扬, 万龙凯. 整体叶盘叶型电解加工流场设计及实验[J].航空学报,2014, 35(1):259-267.
LIU Jia, XU Zhengyang, WAN Longkai. Design and Experiment of Electrolyte Flow Mode in Electrochemical Machining of Blisk[J]. Acta Aeronautica et Astronautica Sinica, 2014, 35(1):259-267.
[9]HU X Y, ZHU D, LI J B. Flow Field Research on Electrochemical Machining with Gas Film Insulation[J]. Journal of Materials Processing Technology, 2019, 267:247-256.
[10]FANG X L, QU N S, ZHANG Y D. Effects of Pulsating Electrolyte Flow in Electrochemical Machining[J]. Journal of Materials Processing Technology, 2014, 214(1):36-43.
[11]PATEL D S, SHARMA V. Sustainable Electrochemical Micromachining Using Atomized Electrolyte Flushing[J]. Journal of the Electrochemical Society, 2021, 168:10.1149/1945-7111/ABF4E9.
[12]ZHU D, XUE Y T, HU X Y. Electrochemical Trepanning with Uniform Electrolyte Flow around the Entire Blade Profile[J]. Chinese Journal of Aeronautics, 2019, 32(7):1748-1755.
[13]XU J Y, ZHU D, LIN J H. Flow Field Design and Experimental Investigation of Electrochemical Trepanning of Diffuser with a Special Structure[J]. Journal of Advanced Manufacturing Technology, 2020, 107:1551-1558.
[14]ZHU D, ZHANG R H, LIU C. Flow Field Improvement by Optimizing Turning Profile at Electrolyte Inlet in Electrochemical Machining[J]. Journal of Precision Engineering and Manufacturing, 2017, 18(1):15-22.
[15]LIN J H, ZHU D. Flow Field Design and Experimental Investigation of the Electrochemical Trepanning of a Diffuser with a Liquid-increasing Seam[J]. Int. J. Adv. Manuf. Technol., 2021, 112:2533-2545.
[16]RATHOD V, DOLOI B, BHATTACHARYYA B. Sidewall Insulation of Microtool for Electrochemical Micromachining to Enhance the Machining Accuracy[J]. Materials and Manufacturing Processes, 2014, 29(3):305-31.
|