[1]江平宇, 王岩, 王焕发, 等. 基于赋值型误差传递网络的多工序加工质量预测[J]. 机械工程学报, 2013, 49(6):160-170.
JIANG Pingyu, WANG Yan, WANG Huanfa, et al. Quality Prediction of Multistage Machining Processes Based on Assigned Error Propagation Network[J]. Journal of Mechanical Engineering, 2013, 49(6):160-170.
[2]MOHAMMADI P, WANG Z J. Machine Learning for Quality Prediction in Abrasion-resistant Material Manufacturing Process[C]∥2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE). Vancouver, 2016:1-4.
[3]武颖, 姚丽亚, 熊辉, 等. 基于数字孪生技术的复杂产品装配过程质量管控方法[J]. 计算机集成制造系统, 2019, 25(6):1568-1575.
WU Ying, YAO Liya, XIONG Hui, et al. Quality Control Method of Complex Product Assembly Process Based on Digital Twin Technology[J]. Computer Integrated Manufacturing Systems, 2019, 25(6):1568-1575.
[4]KIRCHEN I, VOGEL-HEUSER B, HILDENBRAND P, et al. Data-driven Model Development for Quality Prediction in Forming Technology[C]∥IEEE 15th International Conference on Industrial Informatics (INDIN). Emden, 2017:775-780.
[5]刘银华, 孙芮, 吴欢. 基于车身尺寸数据流潜结构建模的装配质量预测控制[J]. 中国机械工程, 2019, 30(2):237-243.
LIU Yinhua, SUN Rui, WU Huan. Latent Structure Modeling and Predictive Quality Control Based on Multi-source Data Streams in the Auto Body Assembly Processes[J]. China Mechanical Engineering, 2019, 30(2):237-243.
[6]任明仑, 宋月丽. 大数据:数据驱动的过程质量控制与改进新视角[J]. 计算机集成制造系统, 2019, 25(11):2731-2742.
REN Minglun, SONG Yueli. Big Data:New Perspective of Process Quality Control and Improvement Driven by Data[J]. Computer Integrated Manufacturing Systems, 2019, 25(11):2731-2742.
[7]GONZALEZ-VAL C, PALLAS A, PANADEIRO V, et al. A Convolutional Approach to Quality Monitoring for Laser Manufacturing[J]. Journal of Intelligent Manufacturing, 2020, 31(3):789-795.
[8]ZHU Jun, CHEN Nan, PENG Weiwen. Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network[J]. IEEE Transactions on Industrial Electronics, 2018, 66(4):3208-3216.
[9]SUN Chuanzhi, LI Chengtian, LIU Yongmeng, et al. Prediction Method of Concentricity and Perpendicularity of Aero Engine Multistage Rotors Based on PSO-BP Neural Network[J]. IEEE Access, 2019, 7:132271-132278.
[10]WAN Xiaodong, WANG Yuanxun, ZHAO Dawei, et al. Weld Quality Monitoring Research in Small Scale Resistance Spot Welding by Dynamic Resistance and Neural Network[J]. Measurement, 2017:120-127.
[11]杨洲, 景博, 张劼, 等. 自动驾驶仪PHM系统健康评估方法研究[J]. 仪器仪表学报, 2012, 33(8):1765-1772.
YANG Zhou, JING Bo, ZHANG Jie, et al. Research on Health Assessment Method of Autopilot Prognostics and Health Management System[J]. Chinese Journal of Scientific Instrument, 2012, 33(8):1765-1772.
[12]ZHENG Maokuan, MING Xinguo, ZHANG Xianyu, et al. Map Reduce Based Parallel Bayesian Network for Manufacturing Quality Control[J]. Chinese Journal of Mechanical Engineering, 2017, 30(5):1216-1226.
[13]朱大业, 丁晓红, 王神龙, 等. 基于支持向量机模型的复杂非线性系统试验不确定度评定方法[J]. 机械工程学报, 2018, 54(8):177-184.
ZHU Daye, DING Xiaohong, WANG Shenlong, et al. Uncertainty Evaluation Method of Complex Nonlinear System Test Based on Support Vector Machine Model[J]. Journal of Mechanical Engineering, 2018, 54(8):177-184.
[14]叶永伟, 陆俊杰, 钱志勤, 等. 基于LS-SVM的机械式温度仪表误差预测研究[J]. 仪器仪表学报, 2016, 37(1):57-66.
YE Yongwei, LU Junjie, QIAN Zhiqin, et al. Study on the Temperature Error Prediction of Mechanical Temperature Instrument Based on LS-SVM[J]. Chinese Journal of Scientific Instrument, 2016, 37(1):57-66.
[15]SONG Lijun, HUANG Wenkang, HAN Xu, et al. Real-time Composition Monitoring Using Support Vector Regression of Laser-induced Plasma for Laser Additive Manufacturing[J]. IEEE Transactions on Industrial Electronics, 2017, 64(1):633-642.
[16]ZHANG Li, ZHOU Weida, CHANG Pei-chann, et al. Iterated Time Series Prediction with Multiple Support Vector Regression Models[J]. Neurocomputing, 2013, 99(1):411-422.
[17]李兵, 韩睿, 何怡刚, 等. 改进随机森林算法在电机轴承故障诊断中的应用[J]. 中国电机工程学报, 2020, 40(4):1310-1319.
LI Bing, HAN Rui, HE Yigang, et al. Applications of the Improved Random Forest Algorithm in Fault Diagnosis of Motor Bearings[J]. Proceedings of the CSEE, 2020, 40(4):1310-1319.
[18]SUI Xiaoyue, LV Zhimin. Prediction of the Mechanical Properties of Hot Rolling Products by Using Attribute Reduction ELM[J]. The International Journal of Advanced Manufacturing Technology, 2016, 85(5/8):1395-1403.
[19]张妍, 王村松, 陆宁云, 等. 基于退化特征相似性的航空发动机寿命预测[J]. 系统工程与电子技术, 2019, 41(6):1414-1421.
ZHANG Yan, WANG Cunsong, LU Ningyun, et al. Remaining Useful Life Prediction for Aero-engine Based on the Similarity of Degradation Characteristics[J]. Systems Engineering and Electronics, 2019, 41(6):1414-1421.
[20]ZHU Zhiyu, PENG Gaoliang, CHEN Yuanhang, et al. A Convolutional Neural Network Based on a Capsule Network with Strong Generalization for Bearing Fault Diagnosis[J]. Neurocomputing, 2019, 323:62-75.
[21]王志学, 刘献礼, 李茂月, 等. 切削加工颤振智能监控技术[J]. 机械工程学报, 2020, 56(24):1-23.
WANG Zhixue, LIU Xianli, LI Maoyue, et al. Intelligent Monitoring and Control Technology of Cutting Chatter[J]. Journal of Mechanical Engineering, 2020, 56(24):1-23.
[22]张冀, 王俊宏, 尉迟明, 等.基于计算机视觉的汽车仪表指针检测方法[J]. 计算机工程与科学, 2013, 35(3):134-139.
ZHANG Ji, WANG Junhong, YUCHI Ming, et al. Novel Automobile Meter Pointer Detection Algorithm Based on Computer Vision[J]. Computer Engineering & Science, 2013, 35(3):134-139.
[23]LI Jialin, LI Xueyi, HE D. A Directed Acyclic Graph Network Combined with CNN and LSTM for Remaining Useful Life Prediction[J]. IEEE Access, 2019, 7:75464-75475.
[24]石琴, 仇多洋, 吴冰, 等. 基于粒子群优化支持向量机算法的行驶工况识别及应用[J]. 中国机械工程, 2018, 29(15):1875-1883.
SHI Qin, QIU Duoyang, WU Bing, et al. DCR and Applications Based on PSO-SVM Algorithm[J]. China Mechanical Engineering, 2018, 29(15):1875-1883.
[25]亓欣波, 李长鹏, 李阳, 等. 基于机器学习的电子束选区熔化成形件密度预测[J]. 机械工程学报, 2019, 55(15):48-55.
QI Xinbo, LI Changpeng, LI Yang, et al. Machinelearning Algorithms on Density Prediction of Electron Beam Selective Melted Parts[J]. Journal of Mechanical Engineering, 2019, 55(15):48-55.
[26]徐文骥, 魏泽飞, 孙晶, 等. 轴承滚子电化学机械光整加工表面质量预测与加工参数选择[J]. 中国机械工程, 2012, 23(5):525-530.
XU Wenji, WEI Zefei, SUN Jing, et al. Surface Quality Prediction and Processing Parameters Determination on Electrochemical Mechanical Finishing of Bearing Roller[J]. China Mechanical Engineering, 2012, 23(5):525-530.
[27]谭峰, 李成南, 萧红, 等. 基于LSTM循环神经网络的数控机床热误差预测方法[J]. 仪器仪表学报, 2020, 41(9):79-87.
TAN Feng, LI Chengnan, XIAO Hong, et al. A Thermal Error Prediction Method for CNC Machine Tool Based on LSTM Recurrent Neural Network[J]. Chinese Journal of Scientific Instrument, 2020, 41(9):79-87.
|